Spaces:
Running
Running
File size: 2,188 Bytes
161ee83 1e7b342 161ee83 3949045 161ee83 3949045 161ee83 3949045 161ee83 3949045 35649b4 3949045 161ee83 c1d5755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
#Import necessary libraries
from flask import Flask, render_template, request
import webbrowser
import numpy as np
import os
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.models import load_model
#load model
model =load_model("model/v4_1_pred_stra_dis.h5")
print('@@ Model loaded')
def pred_cot_dieas(cott_plant):
test_image = load_img(cott_plant, target_size = (150, 150)) # load image
print("@@ Got Image for prediction")
test_image = img_to_array(test_image)/255 # convert image to np array and normalize
test_image = np.expand_dims(test_image, axis = 0) # change dimention 3D to 4D
result = model.predict(test_image).round(3) # predict diseased palnt or not
print('@@ Raw result = ', result)
pred = np.argmax(result) # get the index of max value
if pred == 0:
return "Diseased Strawberry Plant", 'angular_leafspot.html'# if index 0 burned leaf
elif pred == 1:
return 'Diseased Strawberry Plant', 'grey_mold.html' # # if index 1
elif pred == 2:
return 'Diseased Strawberry Plant', 'leaf_spot.html' # if index 2 fresh leaf
else:
return "Diseased Strawberry Plant", 'powdery_mildew_leaf.html' # if index 3
#------------>>pred_cot_dieas<<--end
# Create flask instance
app = Flask(__name__)
# render index.html page
@app.route("/", methods=['GET', 'POST'])
def home():
return render_template('index1.html')
# get input image from client then predict class and render respective .html page for solution
@app.route("/predict", methods = ['GET','POST'])
def predict():
if request.method == 'POST':
file = request.files['image'] # fet input
filename = file.filename
print("@@ Input posted = ", filename)
file_path = os.path.join('static/user uploaded', filename)
file.save(file_path)
print("@@ Predicting class......")
pred, output_page = pred_cot_dieas(cott_plant=file_path)
return render_template(output_page, pred_output = pred, user_image = file_path)
# For local system & cloud
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860) |