Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Import necessary libraries
|
2 |
+
from flask import Flask, render_template, request
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
|
7 |
+
from keras.preprocessing.image import load_img
|
8 |
+
from keras.preprocessing.image import img_to_array
|
9 |
+
from keras.models import load_model
|
10 |
+
|
11 |
+
#load model
|
12 |
+
model =load_model("model/v4_1_pred_stra_dis.h5")
|
13 |
+
|
14 |
+
print('@@ Model loaded')
|
15 |
+
|
16 |
+
|
17 |
+
def pred_cot_dieas(cott_plant):
|
18 |
+
test_image = load_img(cott_plant, target_size = (150, 150)) # load image
|
19 |
+
print("@@ Got Image for prediction")
|
20 |
+
|
21 |
+
test_image = img_to_array(test_image)/255 # convert image to np array and normalize
|
22 |
+
test_image = np.expand_dims(test_image, axis = 0) # change dimention 3D to 4D
|
23 |
+
|
24 |
+
result = model.predict(test_image).round(3) # predict diseased palnt or not
|
25 |
+
print('@@ Raw result = ', result)
|
26 |
+
|
27 |
+
pred = np.argmax(result) # get the index of max value
|
28 |
+
|
29 |
+
if pred == 0:
|
30 |
+
return "Diseased Strawberry Plant", 'angular_leafspot.html' # if index 0 burned leaf
|
31 |
+
elif pred == 1:
|
32 |
+
return 'Diseased Strawberry Plant', 'grey_mold.html' # # if index 1
|
33 |
+
elif pred == 2:
|
34 |
+
return 'Diseased Strawberry Plant', 'leaf_spot.html' # if index 2 fresh leaf
|
35 |
+
else:
|
36 |
+
return "Diseased Strawberry Plant", 'powdery_mildew_leaf.html' # if index 3
|
37 |
+
|
38 |
+
#------------>>pred_cot_dieas<<--end
|
39 |
+
|
40 |
+
# Create flask instance
|
41 |
+
app = Flask(__name__)
|
42 |
+
|
43 |
+
# render index.html page
|
44 |
+
@app.route("/", methods=['GET', 'POST'])
|
45 |
+
def home():
|
46 |
+
return render_template('index1.html')
|
47 |
+
|
48 |
+
|
49 |
+
# get input image from client then predict class and render respective .html page for solution
|
50 |
+
@app.route("/predict", methods = ['GET','POST'])
|
51 |
+
def predict():
|
52 |
+
if request.method == 'POST':
|
53 |
+
file = request.files['image'] # fet input
|
54 |
+
filename = file.filename
|
55 |
+
print("@@ Input posted = ", filename)
|
56 |
+
|
57 |
+
file_path = os.path.join('static/user uploaded', filename)
|
58 |
+
file.save(file_path)
|
59 |
+
|
60 |
+
print("@@ Predicting class......")
|
61 |
+
pred, output_page = pred_cot_dieas(cott_plant=file_path)
|
62 |
+
|
63 |
+
return render_template(output_page, pred_output = pred, user_image = file_path)
|
64 |
+
|
65 |
+
# For local system & cloud
|
66 |
+
if __name__ == "__main__":
|
67 |
+
app.run(threaded=False,)
|
68 |
+
|
69 |
+
|