File size: 19,906 Bytes
50f034f
457f9d1
50f034f
 
 
457f9d1
50f034f
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ca5f7
 
e32ae3e
 
50f034f
457f9d1
 
 
 
 
 
50f034f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a029b
881d56d
d6a029b
50f034f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457f9d1
50f034f
 
 
 
 
 
 
 
 
 
457f9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f034f
 
 
 
457f9d1
50f034f
 
 
 
75a7169
457f9d1
 
93ca721
75a7169
 
50f034f
 
 
 
 
 
 
 
457f9d1
534a89c
 
99122c4
 
 
 
50f034f
75a7169
 
 
 
 
 
50f034f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457f9d1
 
 
 
50f034f
457f9d1
50f034f
457f9d1
 
50f034f
457f9d1
 
 
 
 
50f034f
457f9d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50f034f
 
 
 
 
 
 
457f9d1
50f034f
457f9d1
 
 
 
 
63015d5
 
1a5973b
50f034f
 
 
79bcce6
50f034f
 
 
 
 
 
 
457f9d1
 
 
50f034f
457f9d1
 
 
 
 
 
50f034f
 
 
457f9d1
 
50f034f
 
457f9d1
50f034f
 
457f9d1
50f034f
 
 
457f9d1
 
50f034f
 
457f9d1
50f034f
1a5973b
457f9d1
e3ca5f7
457f9d1
 
 
50f034f
457f9d1
 
 
 
 
50f034f
457f9d1
 
50f034f
457f9d1
 
 
50f034f
457f9d1
 
50f034f
 
457f9d1
 
50f034f
457f9d1
 
 
 
 
 
 
50f034f
457f9d1
 
50f034f
457f9d1
 
50f034f
 
 
 
 
 
 
457f9d1
 
50f034f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import os
import sys
import warnings
from pathlib import Path
from typing import Optional
from dataclasses import dataclass

import argbind
import audiotools as at
import torch
import torch.nn as nn
from audiotools import AudioSignal
from audiotools.data import transforms
from einops import rearrange
from rich import pretty
from rich.traceback import install
from tensorboardX import SummaryWriter

import vampnet
from vampnet.modules.transformer import VampNet
from vampnet.util import codebook_unflatten, codebook_flatten
from vampnet import mask as pmask
# from dac.model.dac import DAC
from lac.model.lac import LAC as DAC

from audiotools.ml.decorators import (
    timer, Tracker, when
)

import loralib as lora


# Enable cudnn autotuner to speed up training
# (can be altered by the funcs.seed function)
torch.backends.cudnn.benchmark = bool(int(os.getenv("CUDNN_BENCHMARK", 1)))
# Uncomment to trade memory for speed.

# Install to make things look nice
warnings.filterwarnings("ignore", category=UserWarning)
pretty.install()
install()

# optim
Accelerator = argbind.bind(at.ml.Accelerator, without_prefix=True)
CrossEntropyLoss = argbind.bind(nn.CrossEntropyLoss)
AdamW = argbind.bind(torch.optim.AdamW)
NoamScheduler = argbind.bind(vampnet.scheduler.NoamScheduler)

# transforms
filter_fn = lambda fn: hasattr(fn, "transform") and fn.__qualname__ not in [
    "BaseTransform",
    "Compose",
    "Choose",
]
tfm = argbind.bind_module(transforms, "train", "val", filter_fn=filter_fn)

# model
VampNet = argbind.bind(VampNet)


# data
AudioLoader = argbind.bind(at.datasets.AudioLoader)
AudioDataset = argbind.bind(at.datasets.AudioDataset, "train", "val")

IGNORE_INDEX = -100


@argbind.bind("train", "val", without_prefix=True)
def build_transform():
    transform = transforms.Compose(
        tfm.VolumeNorm(("const", -24)),
        # tfm.PitchShift(),
        tfm.RescaleAudio(),
    )
    return transform


@torch.no_grad()
def apply_transform(transform_fn, batch):
    sig: AudioSignal = batch["signal"]
    kwargs = batch["transform_args"]

    sig: AudioSignal = transform_fn(sig.clone(), **kwargs)
    return sig


def build_datasets(args, sample_rate: int):
    with argbind.scope(args, "train"):
        train_data = AudioDataset(
            AudioLoader(), sample_rate, transform=build_transform()
        )
    with argbind.scope(args, "val"):
        val_data = AudioDataset(AudioLoader(), sample_rate, transform=build_transform())
    return train_data, val_data


def rand_float(shape, low, high, rng):
    return rng.draw(shape)[:, 0] * (high - low) + low


def flip_coin(shape, p, rng):
    return rng.draw(shape)[:, 0] < p


def num_params_hook(o, p):
    return o + f" {p/1e6:<.3f}M params."


def add_num_params_repr_hook(model):
    import numpy as np
    from functools import partial

    for n, m in model.named_modules():
        o = m.extra_repr()
        p = sum([np.prod(p.size()) for p in m.parameters()])

        setattr(m, "extra_repr", partial(num_params_hook, o=o, p=p))


def accuracy(
    preds: torch.Tensor,
    target: torch.Tensor,
    top_k: int = 1,
    ignore_index: Optional[int] = None,
) -> torch.Tensor:
    # Flatten the predictions and targets to be of shape (batch_size * sequence_length, n_class)
    preds = rearrange(preds, "b p s -> (b s) p")
    target = rearrange(target, "b s -> (b s)")

    # return torchmetrics.functional.accuracy(preds, target, task='multiclass', top_k=topk, num_classes=preds.shape[-1], ignore_index=ignore_index)
    if ignore_index is not None:
        # Create a mask for the ignored index
        mask = target != ignore_index
        # Apply the mask to the target and predictions
        preds = preds[mask]
        target = target[mask]

    # Get the top-k predicted classes and their indices
    _, pred_indices = torch.topk(preds, k=top_k, dim=-1)

    # Determine if the true target is in the top-k predicted classes
    correct = torch.sum(torch.eq(pred_indices, target.unsqueeze(1)), dim=1)

    # Calculate the accuracy
    accuracy = torch.mean(correct.float())

    return accuracy

def _metrics(z_hat, r, target, flat_mask, output):
    for r_range in [(0, 0.5), (0.5, 1.0)]:
        unmasked_target = target.masked_fill(flat_mask.bool(), IGNORE_INDEX)
        masked_target = target.masked_fill(~flat_mask.bool(), IGNORE_INDEX)

        assert target.shape[0] == r.shape[0]
        # grab the indices of the r values that are in the range
        r_idx = (r >= r_range[0]) & (r < r_range[1])

        # grab the target and z_hat values that are in the range
        r_unmasked_target = unmasked_target[r_idx]
        r_masked_target = masked_target[r_idx]
        r_z_hat = z_hat[r_idx]

        for topk in (1, 25):
            s, e = r_range
            tag = f"accuracy-{s}-{e}/top{topk}"

            output[f"{tag}/unmasked"] = accuracy(
                preds=r_z_hat,
                target=r_unmasked_target,
                ignore_index=IGNORE_INDEX,
                top_k=topk,
            )
            output[f"{tag}/masked"] = accuracy(
                preds=r_z_hat,
                target=r_masked_target,
                ignore_index=IGNORE_INDEX,
                top_k=topk,
            )


@dataclass
class State:
    model: VampNet
    codec: DAC

    optimizer: AdamW
    scheduler: NoamScheduler
    criterion: CrossEntropyLoss
    grad_clip_val: float

    rng: torch.quasirandom.SobolEngine

    train_data: AudioDataset
    val_data: AudioDataset

    tracker: Tracker


@timer()
def train_loop(state: State, batch: dict, accel: Accelerator):
    state.model.train()
    batch = at.util.prepare_batch(batch, accel.device)
    signal = apply_transform(state.train_data.transform, batch)

    output = {}
    vn = accel.unwrap(state.model)
    with accel.autocast():
        with torch.inference_mode():
            state.codec.to(accel.device)
            z = state.codec.encode(signal.samples, signal.sample_rate)["codes"]
            z = z[:, : vn.n_codebooks, :]

        n_batch = z.shape[0]
        r = state.rng.draw(n_batch)[:, 0].to(accel.device)

        mask = pmask.random(z, r)
        mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
        z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)
        
        z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)

        dtype = torch.bfloat16 if accel.amp else None
        with accel.autocast(dtype=dtype):
            z_hat = state.model(z_mask_latent, r)

        target = codebook_flatten(
            z[:, vn.n_conditioning_codebooks :, :],
        )

        flat_mask = codebook_flatten(
            mask[:, vn.n_conditioning_codebooks :, :],
        )

        # replace target with ignore index for masked tokens
        t_masked = target.masked_fill(~flat_mask.bool(), IGNORE_INDEX)
        output["loss"] = state.criterion(z_hat, t_masked)

        _metrics(
            r=r,
            z_hat=z_hat,
            target=target,
            flat_mask=flat_mask,
            output=output,
        )

    
    accel.backward(output["loss"])

    output["other/learning_rate"] = state.optimizer.param_groups[0]["lr"]
    output["other/batch_size"] = z.shape[0]


    accel.scaler.unscale_(state.optimizer)
    output["other/grad_norm"] = torch.nn.utils.clip_grad_norm_(
        state.model.parameters(), state.grad_clip_val
    )

    accel.step(state.optimizer)
    state.optimizer.zero_grad()

    state.scheduler.step()
    accel.update()


    return {k: v for k, v in sorted(output.items())}


@timer()
@torch.no_grad()
def val_loop(state: State, batch: dict, accel: Accelerator):
    state.model.eval()
    state.codec.eval()
    batch = at.util.prepare_batch(batch, accel.device)
    signal = apply_transform(state.val_data.transform, batch)

    vn = accel.unwrap(state.model)
    z = state.codec.encode(signal.samples, signal.sample_rate)["codes"]
    z = z[:, : vn.n_codebooks, :]

    n_batch = z.shape[0]
    r = state.rng.draw(n_batch)[:, 0].to(accel.device)

    mask = pmask.random(z, r)
    mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
    z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)

    z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)

    z_hat = state.model(z_mask_latent, r)

    target = codebook_flatten(
        z[:, vn.n_conditioning_codebooks :, :],
    )

    flat_mask = codebook_flatten(
        mask[:, vn.n_conditioning_codebooks :, :]
    )

    output = {}
    # replace target with ignore index for masked tokens
    t_masked = target.masked_fill(~flat_mask.bool(), IGNORE_INDEX)
    output["loss"] = state.criterion(z_hat, t_masked)

    _metrics(
        r=r,
        z_hat=z_hat,
        target=target,
        flat_mask=flat_mask,
        output=output,
    )

    return output


def validate(state, val_dataloader, accel):
    for batch in val_dataloader:
        output = val_loop(state, batch, accel)
    # Consolidate state dicts if using ZeroRedundancyOptimizer
    if hasattr(state.optimizer, "consolidate_state_dict"):
        state.optimizer.consolidate_state_dict()
    return output


def checkpoint(state, save_iters, save_path, fine_tune):
    if accel.local_rank != 0:
        state.tracker.print(f"ERROR:Skipping checkpoint on rank {accel.local_rank}")
        return

    metadata = {"logs": dict(state.tracker.history)}

    tags = ["latest"]
    state.tracker.print(f"Saving to {str(Path('.').absolute())}")

    if state.tracker.step in save_iters:
        tags.append(f"{state.tracker.step // 1000}k")

    if state.tracker.is_best("val", "loss"):
        state.tracker.print(f"Best model so far")
        tags.append("best")

    if fine_tune:
        for tag in tags: 
            # save the lora model 
            (Path(save_path) / tag).mkdir(parents=True, exist_ok=True)
            torch.save(
                lora.lora_state_dict(accel.unwrap(state.model)), 
                f"{save_path}/{tag}/lora.pth"
            )

    for tag in tags:
        model_extra = {
            "optimizer.pth": state.optimizer.state_dict(),
            "scheduler.pth": state.scheduler.state_dict(),
            "tracker.pth": state.tracker.state_dict(),
            "metadata.pth": metadata,
        }

        accel.unwrap(state.model).metadata = metadata
        accel.unwrap(state.model).save_to_folder(
            f"{save_path}/{tag}", model_extra, package=False
        )


def save_sampled(state, z, writer):
    num_samples = z.shape[0]

    for i in range(num_samples):
        sampled = accel.unwrap(state.model).generate(
            codec=state.codec,
            time_steps=z.shape[-1],
            start_tokens=z[i : i + 1],
        )
        sampled.cpu().write_audio_to_tb(
            f"sampled/{i}",
            writer,
            step=state.tracker.step,
            plot_fn=None,
        )


def save_imputation(state, z, val_idx, writer):
    n_prefix = int(z.shape[-1] * 0.25)
    n_suffix = int(z.shape[-1] *  0.25)

    vn = accel.unwrap(state.model)

    mask = pmask.inpaint(z, n_prefix, n_suffix)
    mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
    z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)

    imputed_noisy = vn.to_signal(z_mask, state.codec)
    imputed_true = vn.to_signal(z, state.codec)

    imputed = []
    for i in range(len(z)):
        imputed.append(
            vn.generate(
                codec=state.codec,
                time_steps=z.shape[-1],
                start_tokens=z[i][None, ...],
                mask=mask[i][None, ...],
            )   
        )   
    imputed = AudioSignal.batch(imputed)

    for i in range(len(val_idx)):
        imputed_noisy[i].cpu().write_audio_to_tb(
            f"imputed_noisy/{i}",
            writer,
            step=state.tracker.step,
            plot_fn=None,
        )
        imputed[i].cpu().write_audio_to_tb(
            f"imputed/{i}",
            writer,
            step=state.tracker.step,
            plot_fn=None,
        )
        imputed_true[i].cpu().write_audio_to_tb(
            f"imputed_true/{i}",
            writer,
            step=state.tracker.step,
            plot_fn=None,
        )


@torch.no_grad()
def save_samples(state: State, val_idx: int, writer: SummaryWriter):
    state.model.eval()
    state.codec.eval()
    vn = accel.unwrap(state.model)

    batch = [state.val_data[i] for i in val_idx]
    batch = at.util.prepare_batch(state.val_data.collate(batch), accel.device)

    signal = apply_transform(state.val_data.transform, batch)

    z = state.codec.encode(signal.samples, signal.sample_rate)["codes"]
    z = z[:, : vn.n_codebooks, :]

    r = torch.linspace(0.1, 0.95, len(val_idx)).to(accel.device)


    mask = pmask.random(z, r)
    mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
    z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)

    z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)

    z_hat = state.model(z_mask_latent, r)

    z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
    z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
    z_pred = torch.cat([z[:, : vn.n_conditioning_codebooks, :], z_pred], dim=1)

    generated = vn.to_signal(z_pred, state.codec)
    reconstructed = vn.to_signal(z, state.codec)
    masked = vn.to_signal(z_mask.squeeze(1), state.codec)

    for i in range(generated.batch_size):
        audio_dict = {
            "original": signal[i],
            "masked": masked[i],
            "generated": generated[i],
            "reconstructed": reconstructed[i],
        }
        for k, v in audio_dict.items():
            v.cpu().write_audio_to_tb(
                f"samples/_{i}.r={r[i]:0.2f}/{k}",
                writer,
                step=state.tracker.step,
                plot_fn=None,
            )

    save_sampled(state=state, z=z, writer=writer)
    save_imputation(state=state, z=z, val_idx=val_idx, writer=writer)



@argbind.bind(without_prefix=True)
def load(
    args,
    accel: at.ml.Accelerator,
    tracker: Tracker,
    save_path: str,
    resume: bool = False,
    tag: str = "latest",
    load_weights: bool = False,
    fine_tune_checkpoint: Optional[str] = None,
    grad_clip_val: float = 5.0,
) -> State:
    codec = DAC.load(args["codec_ckpt"], map_location="cpu")
    codec.eval()

    model, v_extra = None, {}

    if resume:
        kwargs = {
            "folder": f"{save_path}/{tag}",
            "map_location": "cpu",
            "package": not load_weights,
        }
        tracker.print(f"Loading checkpoint from {kwargs['folder']}")
        if (Path(kwargs["folder"]) / "vampnet").exists():
            model, v_extra = VampNet.load_from_folder(**kwargs)
        else:
            raise ValueError(
                f"Could not find a VampNet checkpoint in {kwargs['folder']}"
            )


    if args["fine_tune"]:
        assert fine_tune_checkpoint is not None, "Must provide a fine-tune checkpoint"
        model = VampNet.load(location=Path(fine_tune_checkpoint), map_location="cpu")


    model = VampNet() if model is None else model

    model = accel.prepare_model(model)

    # assert accel.unwrap(model).n_codebooks == codec.quantizer.n_codebooks
    assert (
        accel.unwrap(model).vocab_size == codec.quantizer.quantizers[0].codebook_size
    )

    optimizer = AdamW(model.parameters(), use_zero=accel.use_ddp)
    scheduler = NoamScheduler(optimizer, d_model=accel.unwrap(model).embedding_dim)
    scheduler.step()

    if "optimizer.pth" in v_extra:
        optimizer.load_state_dict(v_extra["optimizer.pth"])
        scheduler.load_state_dict(v_extra["scheduler.pth"])
    if "tracker.pth" in v_extra:
        tracker.load_state_dict(v_extra["tracker.pth"])
    
    criterion = CrossEntropyLoss()

    sample_rate = codec.sample_rate

    # a better rng for sampling from our schedule
    rng = torch.quasirandom.SobolEngine(1, scramble=True, seed=args["seed"])  

    # log a model summary w/ num params
    if accel.local_rank == 0:
        add_num_params_repr_hook(accel.unwrap(model))
        with open(f"{save_path}/model.txt", "w") as f:
            f.write(repr(accel.unwrap(model)))

    # load the datasets
    train_data, val_data = build_datasets(args, sample_rate)

    return State(
        tracker=tracker,
        model=model,
        codec=codec,
        optimizer=optimizer,
        scheduler=scheduler,
        criterion=criterion,
        rng=rng,
        train_data=train_data,
        val_data=val_data,
        grad_clip_val=grad_clip_val,
    )


@argbind.bind(without_prefix=True)
def train(
    args,
    accel: at.ml.Accelerator,
    seed: int = 0,
    codec_ckpt: str = None,
    save_path: str = "ckpt",
    num_iters: int = int(1000e6),
    save_iters: list = [10000, 50000, 100000, 300000, 500000,],
    sample_freq: int = 10000, 
    val_freq: int = 1000,
    batch_size: int = 12,
    val_idx: list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
    num_workers: int = 10,
    fine_tune: bool = False, 
):
    assert codec_ckpt is not None, "codec_ckpt is required"

    seed = seed + accel.local_rank
    at.util.seed(seed)
    writer = None

    if accel.local_rank == 0:
        writer = SummaryWriter(log_dir=f"{save_path}/logs/")
        argbind.dump_args(args, f"{save_path}/args.yml")

        tracker = Tracker(
            writer=writer, log_file=f"{save_path}/log.txt", rank=accel.local_rank
        )

    # load the codec model
    state: State = load(
        args=args, 
        accel=accel, 
        tracker=tracker, 
        save_path=save_path)


    train_dataloader = accel.prepare_dataloader(
        state.train_data,
        start_idx=state.tracker.step * batch_size,
        num_workers=num_workers,
        batch_size=batch_size,
        collate_fn=state.train_data.collate,
    )
    val_dataloader = accel.prepare_dataloader(
        state.val_data,
        start_idx=0,
        num_workers=num_workers,
        batch_size=batch_size,
        collate_fn=state.val_data.collate,
        persistent_workers=True,
    )

    

    if fine_tune:
        lora.mark_only_lora_as_trainable(state.model)

    # Wrap the functions so that they neatly track in TensorBoard + progress bars
    # and only run when specific conditions are met.
    global train_loop, val_loop, validate, save_samples, checkpoint

    train_loop = tracker.log("train", "value", history=False)(
        tracker.track("train", num_iters, completed=state.tracker.step)(train_loop)
    )
    val_loop = tracker.track("val", len(val_dataloader))(val_loop)
    validate = tracker.log("val", "mean")(validate)

    save_samples = when(lambda: accel.local_rank == 0)(save_samples)
    checkpoint = when(lambda: accel.local_rank == 0)(checkpoint)

    with tracker.live:
        for tracker.step, batch in enumerate(train_dataloader, start=tracker.step):
            train_loop(state, batch, accel)

            last_iter = (
                tracker.step == num_iters - 1 if num_iters is not None else False
            )

            if tracker.step % sample_freq == 0 or last_iter:
                save_samples(state, val_idx, writer)

            if tracker.step % val_freq == 0 or last_iter:
                validate(state, val_dataloader, accel)
                checkpoint(
                    state=state, 
                    save_iters=save_iters, 
                    save_path=save_path, 
                    fine_tune=fine_tune)

                # Reset validation progress bar, print summary since last validation.
                tracker.done("val", f"Iteration {tracker.step}")

            if last_iter:
                break


if __name__ == "__main__":
    args = argbind.parse_args()
    args["args.debug"] = int(os.getenv("LOCAL_RANK", 0)) == 0
    with argbind.scope(args):
        with Accelerator() as accel:
            if accel.local_rank != 0:
                sys.tracebacklimit = 0
            train(args, accel)