Spaces:
Sleeping
Sleeping
Hugo Flores Garcia
commited on
Commit
·
e3ca5f7
1
Parent(s):
7aa3063
refactor masking, interface, demo
Browse files- .dockerignore +0 -2
- README.md +5 -1
- demo.py +137 -324
- env/alias.sh +0 -3
- env/data.sh +0 -36
- env/entry_script.sh +0 -41
- env/setup.py +0 -94
- scripts/exp/train.py +23 -19
- scripts/utils/vamp_folder.py +0 -13
- vampnet/interface.py +63 -296
- vampnet/mask.py +184 -0
- vampnet/modules/base.py +0 -412
- vampnet/modules/layers.py +0 -17
- vampnet/modules/transformer.py +282 -4
- vampnet/signal.py +0 -5
- vampnet/util.py +15 -1
.dockerignore
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
*.wav
|
2 |
-
runs/
|
|
|
|
|
|
README.md
CHANGED
@@ -27,7 +27,7 @@ git clone https://github.com/hugofloresgarcia/vampnet2.git
|
|
27 |
pip install -e ./vampnet2
|
28 |
```
|
29 |
|
30 |
-
## A note on
|
31 |
This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
|
32 |
Config files are stored in the `conf/` folder.
|
33 |
|
@@ -56,6 +56,10 @@ You just need to provide a list of audio files // folders to fine-tune on, then
|
|
56 |
python scripts/exp/train.py --args.load conf/lora/birds.yml --save_path /path/to/checkpoints
|
57 |
```
|
58 |
|
|
|
|
|
|
|
|
|
59 |
## Launching the Gradio Interface
|
60 |
```bash
|
61 |
python demo.py --args.load conf/interface/spotdl.yml --Interface.device cuda
|
|
|
27 |
pip install -e ./vampnet2
|
28 |
```
|
29 |
|
30 |
+
## A note on argbind
|
31 |
This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
|
32 |
Config files are stored in the `conf/` folder.
|
33 |
|
|
|
56 |
python scripts/exp/train.py --args.load conf/lora/birds.yml --save_path /path/to/checkpoints
|
57 |
```
|
58 |
|
59 |
+
## Getting the Pretrained Models
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
## Launching the Gradio Interface
|
64 |
```bash
|
65 |
python demo.py --args.load conf/interface/spotdl.yml --Interface.device cuda
|
demo.py
CHANGED
@@ -3,6 +3,7 @@ from typing import Tuple
|
|
3 |
import yaml
|
4 |
import tempfile
|
5 |
import uuid
|
|
|
6 |
|
7 |
import numpy as np
|
8 |
import audiotools as at
|
@@ -10,6 +11,7 @@ import argbind
|
|
10 |
|
11 |
import gradio as gr
|
12 |
from vampnet.interface import Interface
|
|
|
13 |
|
14 |
Interface = argbind.bind(Interface)
|
15 |
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
@@ -60,132 +62,61 @@ def load_random_audio():
|
|
60 |
return sig.path_to_file
|
61 |
|
62 |
|
63 |
-
def
|
64 |
-
input_audio
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
downsample_factor=mask_periodic_amt,
|
80 |
-
stretch_factor=stretch_factor,
|
81 |
-
periodic_width=mask_periodic_width,
|
82 |
-
periodic_dropout=0.0,
|
83 |
-
periodic_width_dropout=0.0,
|
84 |
-
n_conditioning_codebooks=None,
|
85 |
-
intensity=1.0,
|
86 |
-
ext_mask=None,
|
87 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
|
91 |
sig = interface.to_signal(zv).cpu()
|
92 |
print("done")
|
93 |
|
94 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
95 |
out_dir.mkdir()
|
96 |
-
sig.write(out_dir / "output.wav")
|
97 |
-
# mask.write(out_dir / "mask.wav")
|
98 |
-
# return sig.path_to_file, mask.path_to_file
|
99 |
-
return sig.path_to_file
|
100 |
-
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
mask_periodic_amt, beat_unmask_dur,
|
106 |
-
mask_dwn_chk, dwn_factor,
|
107 |
-
mask_up_chk, up_factor,
|
108 |
-
num_vamps, mode, use_beats, num_steps, snap_to_beats,
|
109 |
-
beat_unmask_drop, mask_periodic_width,
|
110 |
-
mask_periodic_dropout, mask_periodic_width_dropout,
|
111 |
-
n_conditioning_codebooks, use_coarse2fine, stretch_factor,
|
112 |
-
):
|
113 |
-
# try:
|
114 |
-
print(input_audio)
|
115 |
-
|
116 |
-
sig = at.AudioSignal(input_audio)
|
117 |
-
|
118 |
-
if snap_to_beats:
|
119 |
-
old_sig = sig.clone()
|
120 |
-
sig = interface.snap_to_beats(sig)
|
121 |
-
if sig.duration < (sig.duration / 4): # we cut off too much
|
122 |
-
sig = old_sig
|
123 |
-
print(f"new sig duration is {sig.duration} which is too short, reverting to old sig")
|
124 |
-
print(f"new sig duration is {sig.duration}")
|
125 |
-
|
126 |
-
if beat_unmask_dur > 0.0 and use_beats:
|
127 |
-
beat_mask = interface.make_beat_mask(
|
128 |
-
sig,
|
129 |
-
before_beat_s=0.0,
|
130 |
-
after_beat_s=beat_unmask_dur,
|
131 |
-
mask_downbeats=mask_dwn_chk,
|
132 |
-
mask_upbeats=mask_up_chk,
|
133 |
-
downbeat_downsample_factor=dwn_factor if dwn_factor > 0 else None,
|
134 |
-
beat_downsample_factor=up_factor if up_factor > 0 else None,
|
135 |
-
dropout=beat_unmask_drop,
|
136 |
-
invert=True
|
137 |
-
)
|
138 |
-
print(beat_mask)
|
139 |
-
else:
|
140 |
-
beat_mask = None
|
141 |
-
|
142 |
-
if mode == "standard":
|
143 |
-
print(f"running standard vampnet with {num_vamps} vamps")
|
144 |
-
zv, mask_z = interface.coarse_vamp(
|
145 |
-
sig,
|
146 |
-
sampling_steps=num_steps,
|
147 |
-
temperature=(init_temp, final_temp),
|
148 |
-
prefix_dur_s=prefix_s,
|
149 |
-
suffix_dur_s=suffix_s,
|
150 |
-
num_vamps=num_vamps,
|
151 |
-
downsample_factor=mask_periodic_amt,
|
152 |
-
stretch_factor=stretch_factor,
|
153 |
-
periodic_width=mask_periodic_width,
|
154 |
-
periodic_dropout=mask_periodic_dropout,
|
155 |
-
periodic_width_dropout=mask_periodic_width_dropout,
|
156 |
-
n_conditioning_codebooks=n_conditioning_codebooks if n_conditioning_codebooks > 0 else None,
|
157 |
-
intensity=rand_mask_intensity,
|
158 |
-
ext_mask=beat_mask,
|
159 |
-
verbose=True,
|
160 |
-
return_mask=True
|
161 |
-
)
|
162 |
-
|
163 |
-
if use_coarse2fine:
|
164 |
-
zv = interface.coarse_to_fine(zv)
|
165 |
-
mask = interface.to_signal(mask_z).cpu()
|
166 |
-
|
167 |
-
sig = interface.to_signal(zv).cpu()
|
168 |
-
print("done")
|
169 |
-
|
170 |
-
out_dir = OUT_DIR / str(uuid.uuid4())
|
171 |
-
out_dir.mkdir()
|
172 |
-
sig.write(out_dir / "output.wav")
|
173 |
-
mask.write(out_dir / "mask.wav")
|
174 |
-
return sig.path_to_file, mask.path_to_file
|
175 |
-
# return sig.path_to_file, mask_z
|
176 |
-
# except Exception as e:
|
177 |
-
# raise gr.Error(f"failed with error: {e}")
|
178 |
|
179 |
-
def save_vamp(
|
180 |
-
input_audio, init_temp, final_temp,
|
181 |
-
prefix_s, suffix_s, rand_mask_intensity,
|
182 |
-
mask_periodic_amt, beat_unmask_dur,
|
183 |
-
mask_dwn_chk, dwn_factor,
|
184 |
-
mask_up_chk, up_factor,
|
185 |
-
num_vamps, mode, output_audio, notes, use_beats, num_steps, snap_to_beats,
|
186 |
-
beat_unmask_drop, mask_periodic_width, mask_periodic_dropout, mask_periodic_width_dropout,
|
187 |
-
n_conditioning_codebooks, use_coarse2fine, stretch_factor
|
188 |
-
):
|
189 |
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
|
190 |
out_dir.mkdir(parents=True, exist_ok=True)
|
191 |
|
@@ -196,30 +127,18 @@ def save_vamp(
|
|
196 |
sig_out.write(out_dir / "output.wav")
|
197 |
|
198 |
data = {
|
199 |
-
"init_temp": init_temp,
|
200 |
-
"final_temp": final_temp,
|
201 |
-
"prefix_s": prefix_s,
|
202 |
-
"suffix_s": suffix_s,
|
203 |
-
"rand_mask_intensity": rand_mask_intensity,
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"num_vamps": num_vamps,
|
212 |
-
"num_steps": num_steps,
|
213 |
-
"snap_to_beats": snap_to_beats,
|
214 |
-
"mode": mode,
|
215 |
-
"notes": notes,
|
216 |
-
"beat_unmask_drop": beat_unmask_drop,
|
217 |
-
"mask_periodic_width": mask_periodic_width,
|
218 |
-
"mask_periodic_dropout": mask_periodic_dropout,
|
219 |
-
"mask_periodic_width_dropout": mask_periodic_width_dropout,
|
220 |
-
"n_conditioning_codebooks": n_conditioning_codebooks,
|
221 |
-
"use_coarse2fine": use_coarse2fine,
|
222 |
-
"stretch_factor": stretch_factor,
|
223 |
}
|
224 |
|
225 |
# save with yaml
|
@@ -234,68 +153,16 @@ def save_vamp(
|
|
234 |
|
235 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
236 |
|
237 |
-
with gr.Blocks() as demo:
|
238 |
-
|
239 |
-
with gr.Row():
|
240 |
-
# input audio
|
241 |
-
with gr.Column():
|
242 |
-
gr.Markdown("""
|
243 |
-
# Vampnet
|
244 |
-
**Instructions**:
|
245 |
-
1. Upload some audio (or click the load random audio button)
|
246 |
-
2. Adjust the mask hints. The more hints, the more the generated music will follow the input music
|
247 |
-
3. Adjust the vampnet parameters. The more vamps, the longer the generated music will be
|
248 |
-
4. Click the "vamp" button
|
249 |
-
5. Listen to the generated audio
|
250 |
-
6. If you noticed something you liked, write some notes, click the "save vamp" button, and copy the save code
|
251 |
-
|
252 |
-
""")
|
253 |
-
gr.Markdown("## Input Audio")
|
254 |
|
255 |
-
with gr.Column():
|
256 |
-
gr.Markdown("""
|
257 |
-
### Tips
|
258 |
-
- use the beat hint button so the output audio has the same beat structure as the input audio
|
259 |
-
- if you want more beat structure:
|
260 |
-
- enable beat hints
|
261 |
-
- if you want a more "random" generation:
|
262 |
-
- increase the periodic unmasking to 12 or more
|
263 |
-
- increase the temperatures!
|
264 |
-
- uncheck the beat hint button (or reduce the beat unmask duration)
|
265 |
-
- if you want the generated audio to sound like the original, but with a different beat structure:
|
266 |
-
- uncheck the beat hint button
|
267 |
-
- decrease the periodic unmasking to anywhere from 2 to 20
|
268 |
-
- slightly decrease the random intensity, to like .95
|
269 |
-
|
270 |
-
|
271 |
-
""")
|
272 |
-
with gr.Column():
|
273 |
-
gr.Markdown("""
|
274 |
-
## Mask Hints
|
275 |
-
- most of the original audio will be masked and replaced with audio generated by vampnet
|
276 |
-
- mask hints are used to guide vampnet to generate audio that sounds like the original
|
277 |
-
- the more hints you give, the more the generated audio will sound like the original
|
278 |
-
|
279 |
-
""")
|
280 |
|
|
|
281 |
|
282 |
with gr.Row():
|
283 |
with gr.Column():
|
284 |
-
mode = gr.Radio(
|
285 |
-
label="**mode**. note that loop mode requires a prefix and suffix longer than 0",
|
286 |
-
choices=["standard",],
|
287 |
-
value="standard"
|
288 |
-
)
|
289 |
use_coarse2fine = gr.Checkbox(
|
290 |
label="use coarse2fine",
|
291 |
value=True
|
292 |
)
|
293 |
-
num_vamps = gr.Number(
|
294 |
-
label="number of vamps. more vamps = longer generated audio",
|
295 |
-
value=1,
|
296 |
-
precision=0,
|
297 |
-
visible=False
|
298 |
-
)
|
299 |
|
300 |
manual_audio_upload = gr.File(
|
301 |
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
|
@@ -328,57 +195,46 @@ with gr.Blocks() as demo:
|
|
328 |
outputs=[ input_audio]
|
329 |
)
|
330 |
|
331 |
-
|
332 |
# mask settings
|
333 |
with gr.Column():
|
334 |
|
335 |
-
|
336 |
-
label="
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
stretch_factor = gr.Slider(
|
342 |
-
label="time stretch factor",
|
343 |
-
minimum=0,
|
344 |
-
maximum=64,
|
345 |
-
step=1,
|
346 |
-
value=1,
|
347 |
)
|
348 |
|
349 |
-
|
350 |
-
label="periodic
|
351 |
minimum=0,
|
352 |
-
maximum=
|
353 |
step=1,
|
354 |
value=9,
|
355 |
)
|
356 |
-
|
357 |
-
label="periodic
|
358 |
minimum=1,
|
359 |
-
maximum=
|
360 |
step=1,
|
361 |
value=1,
|
362 |
)
|
363 |
-
mask_periodic_dropout = gr.Slider(
|
364 |
-
label="periodic hint dropout (0.0 means no dropout, 1.0 means all dropout)",
|
365 |
-
minimum=0.0,
|
366 |
-
maximum=1.0,
|
367 |
-
value=0.0,
|
368 |
-
)
|
369 |
-
mask_periodic_width_dropout = gr.Slider(
|
370 |
-
label="periodic hint width dropout (0.0 means no dropout, 1.0 means all dropout)",
|
371 |
-
minimum=0.0,
|
372 |
-
maximum=1.0,
|
373 |
-
value=0.0,
|
374 |
-
)
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
with gr.Accordion("prefix/suffix hints", open=False):
|
384 |
prefix_s = gr.Slider(
|
@@ -408,15 +264,6 @@ with gr.Blocks() as demo:
|
|
408 |
value=1.0
|
409 |
)
|
410 |
|
411 |
-
use_beats = gr.Checkbox(
|
412 |
-
label="use beat hints (helps the output stick to the beat structure of the input)",
|
413 |
-
value=False
|
414 |
-
)
|
415 |
-
|
416 |
-
snap_to_beats = gr.Checkbox(
|
417 |
-
label="trim to beat markers (uncheck if the output audio is too short.)",
|
418 |
-
value=True
|
419 |
-
)
|
420 |
|
421 |
num_steps = gr.Slider(
|
422 |
label="number of steps (should normally be between 12 and 36)",
|
@@ -426,6 +273,14 @@ with gr.Blocks() as demo:
|
|
426 |
value=36
|
427 |
)
|
428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
vamp_button = gr.Button("vamp!!!")
|
430 |
|
431 |
output_audio = gr.Audio(
|
@@ -434,59 +289,26 @@ with gr.Blocks() as demo:
|
|
434 |
type="filepath"
|
435 |
)
|
436 |
|
437 |
-
|
438 |
-
# gr.Markdown("**NOTE**: for loop mode, both prefix and suffix must be greater than 0.")
|
439 |
-
# compute_mask_button = gr.Button("compute mask")
|
440 |
-
# mask_output = gr.Audio(
|
441 |
-
# label="masked audio",
|
442 |
-
# interactive=False,
|
443 |
-
# visible=False
|
444 |
-
# )
|
445 |
-
# mask_output_viz = gr.Video(
|
446 |
-
# label="masked audio",
|
447 |
-
# interactive=False
|
448 |
-
# )
|
449 |
|
450 |
-
with gr.Column():
|
451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
beat_unmask_drop = gr.Slider(
|
460 |
-
label="dropout (within beat)",
|
461 |
-
minimum=0.0,
|
462 |
-
maximum=1.0,
|
463 |
-
value=0.0
|
464 |
-
)
|
465 |
|
466 |
-
with gr.Accordion("downbeat settings", open=False):
|
467 |
-
mask_dwn_chk = gr.Checkbox(
|
468 |
-
label="hint downbeats",
|
469 |
-
value=True
|
470 |
-
)
|
471 |
-
dwn_factor = gr.Slider(
|
472 |
-
label="downbeat downsample factor (hint only every Nth downbeat)",
|
473 |
-
value=0,
|
474 |
-
minimum=0,
|
475 |
-
maximum=16,
|
476 |
-
step=1
|
477 |
-
)
|
478 |
-
with gr.Accordion("upbeat settings", open=False):
|
479 |
-
mask_up_chk = gr.Checkbox(
|
480 |
-
label="hint upbeats",
|
481 |
-
value=True
|
482 |
-
)
|
483 |
-
up_factor = gr.Slider(
|
484 |
-
label="upbeat downsample factor (hint only every Nth upbeat)",
|
485 |
-
value=0,
|
486 |
-
minimum=0,
|
487 |
-
maximum=16,
|
488 |
-
step=1
|
489 |
-
)
|
490 |
|
491 |
notes_text = gr.Textbox(
|
492 |
label="type any notes about the generated audio here",
|
@@ -499,52 +321,43 @@ with gr.Blocks() as demo:
|
|
499 |
interactive=False
|
500 |
)
|
501 |
|
502 |
-
|
503 |
thank_you = gr.Markdown("")
|
504 |
-
|
505 |
-
|
506 |
# connect widgets
|
507 |
vamp_button.click(
|
508 |
fn=vamp,
|
509 |
-
inputs=
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
|
|
|
|
519 |
outputs=[output_audio, audio_mask],
|
520 |
api_name="vamp"
|
521 |
)
|
522 |
|
523 |
save_button.click(
|
524 |
fn=save_vamp,
|
525 |
-
inputs=
|
526 |
-
input_audio,
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
outputs=[thank_you, download_file]
|
539 |
)
|
540 |
|
541 |
-
ez_vamp_button = gr.Button("ez vamp")
|
542 |
-
ez_vamp_button.click(
|
543 |
-
fn=ez_vamp,
|
544 |
-
inputs=[input_audio, init_temp, final_temp, mask_periodic_amt,
|
545 |
-
mask_periodic_width, num_steps, stretch_factor ],
|
546 |
-
outputs=[output_audio],
|
547 |
-
api_name="ez_vamp"
|
548 |
-
)
|
549 |
-
|
550 |
demo.launch(share=True, enable_queue=False, debug=True)
|
|
|
3 |
import yaml
|
4 |
import tempfile
|
5 |
import uuid
|
6 |
+
from dataclasses import dataclass, asdict
|
7 |
|
8 |
import numpy as np
|
9 |
import audiotools as at
|
|
|
11 |
|
12 |
import gradio as gr
|
13 |
from vampnet.interface import Interface
|
14 |
+
from vampnet import mask as pmask
|
15 |
|
16 |
Interface = argbind.bind(Interface)
|
17 |
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
|
|
62 |
return sig.path_to_file
|
63 |
|
64 |
|
65 |
+
def vamp(data):
|
66 |
+
print(data[input_audio])
|
67 |
+
sig = at.AudioSignal(data[input_audio])
|
68 |
+
|
69 |
+
z = interface.encode(sig)
|
70 |
+
|
71 |
+
ncc = data[n_conditioning_codebooks]
|
72 |
+
|
73 |
+
# build the mask
|
74 |
+
mask = pmask.linear_random(z, data[rand_mask_intensity])
|
75 |
+
mask = pmask.mask_and(
|
76 |
+
mask, pmask.inpaint(
|
77 |
+
z,
|
78 |
+
interface.s2t(data[prefix_s]),
|
79 |
+
interface.s2t(data[suffix_s])
|
80 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
+
mask = pmask.mask_and(
|
83 |
+
mask, pmask.periodic_mask(
|
84 |
+
z,
|
85 |
+
data[periodic_p],
|
86 |
+
data[periodic_w],
|
87 |
+
random_roll=True
|
88 |
+
)
|
89 |
+
)
|
90 |
+
mask = pmask.dropout(mask, data[dropout])
|
91 |
+
mask = pmask.codebook_unmask(mask, ncc)
|
92 |
+
|
93 |
+
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}")
|
94 |
+
|
95 |
+
zv, mask_z = interface.coarse_vamp(
|
96 |
+
z,
|
97 |
+
mask=mask,
|
98 |
+
sampling_steps=data[num_steps],
|
99 |
+
temperature=(data[init_temp], data[final_temp]),
|
100 |
+
return_mask=True
|
101 |
+
)
|
102 |
+
|
103 |
+
if use_coarse2fine:
|
104 |
+
zv = interface.coarse_to_fine(zv)
|
105 |
+
|
106 |
|
107 |
+
mask = interface.to_signal(mask_z).cpu()
|
108 |
|
109 |
sig = interface.to_signal(zv).cpu()
|
110 |
print("done")
|
111 |
|
112 |
out_dir = OUT_DIR / str(uuid.uuid4())
|
113 |
out_dir.mkdir()
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
sig.write(out_dir / "output.wav")
|
116 |
+
mask.write(out_dir / "mask.wav")
|
117 |
+
return sig.path_to_file, mask.path_to_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
def save_vamp(data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
|
121 |
out_dir.mkdir(parents=True, exist_ok=True)
|
122 |
|
|
|
127 |
sig_out.write(out_dir / "output.wav")
|
128 |
|
129 |
data = {
|
130 |
+
"init_temp": data[init_temp],
|
131 |
+
"final_temp": data[final_temp],
|
132 |
+
"prefix_s": data[prefix_s],
|
133 |
+
"suffix_s": data[suffix_s],
|
134 |
+
"rand_mask_intensity": data[rand_mask_intensity],
|
135 |
+
"num_steps": data[num_steps],
|
136 |
+
"notes": data[notes_text],
|
137 |
+
"periodic_period": data[periodic_p],
|
138 |
+
"periodic_width": data[periodic_w],
|
139 |
+
"n_conditioning_codebooks": data[n_conditioning_codebooks],
|
140 |
+
"use_coarse2fine": data[use_coarse2fine],
|
141 |
+
"stretch_factor": data[stretch_factor],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
}
|
143 |
|
144 |
# save with yaml
|
|
|
153 |
|
154 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
with gr.Blocks() as demo:
|
159 |
|
160 |
with gr.Row():
|
161 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
162 |
use_coarse2fine = gr.Checkbox(
|
163 |
label="use coarse2fine",
|
164 |
value=True
|
165 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
manual_audio_upload = gr.File(
|
168 |
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
|
|
|
195 |
outputs=[ input_audio]
|
196 |
)
|
197 |
|
|
|
198 |
# mask settings
|
199 |
with gr.Column():
|
200 |
|
201 |
+
rand_mask_intensity = gr.Slider(
|
202 |
+
label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
|
203 |
+
minimum=0.0,
|
204 |
+
maximum=1.0,
|
205 |
+
value=1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
)
|
207 |
|
208 |
+
periodic_p = gr.Slider(
|
209 |
+
label="periodic prompt (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
|
210 |
minimum=0,
|
211 |
+
maximum=128,
|
212 |
step=1,
|
213 |
value=9,
|
214 |
)
|
215 |
+
periodic_w = gr.Slider(
|
216 |
+
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
|
217 |
minimum=1,
|
218 |
+
maximum=20,
|
219 |
step=1,
|
220 |
value=1,
|
221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
with gr.Accordion("extras ", open=False):
|
224 |
+
n_conditioning_codebooks = gr.Number(
|
225 |
+
label="number of conditioning codebooks. probably 0",
|
226 |
+
value=0,
|
227 |
+
precision=0,
|
228 |
+
)
|
229 |
+
|
230 |
+
stretch_factor = gr.Slider(
|
231 |
+
label="time stretch factor",
|
232 |
+
minimum=0,
|
233 |
+
maximum=64,
|
234 |
+
step=1,
|
235 |
+
value=1,
|
236 |
+
)
|
237 |
+
|
238 |
|
239 |
with gr.Accordion("prefix/suffix hints", open=False):
|
240 |
prefix_s = gr.Slider(
|
|
|
264 |
value=1.0
|
265 |
)
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
num_steps = gr.Slider(
|
269 |
label="number of steps (should normally be between 12 and 36)",
|
|
|
273 |
value=36
|
274 |
)
|
275 |
|
276 |
+
dropout = gr.Slider(
|
277 |
+
label="mask dropout",
|
278 |
+
minimum=0.0,
|
279 |
+
maximum=1.0,
|
280 |
+
step=0.01,
|
281 |
+
value=0.0
|
282 |
+
)
|
283 |
+
|
284 |
vamp_button = gr.Button("vamp!!!")
|
285 |
|
286 |
output_audio = gr.Audio(
|
|
|
289 |
type="filepath"
|
290 |
)
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
# with gr.Column():
|
294 |
+
# with gr.Accordion(label="beat unmask (how much time around the beat should be hinted?)"):
|
295 |
+
# use_beats = gr.Checkbox(
|
296 |
+
# label="use beat hints (helps the output stick to the beat structure of the input)",
|
297 |
+
# value=False
|
298 |
+
# )
|
299 |
+
|
300 |
+
# snap_to_beats = gr.Checkbox(
|
301 |
+
# label="trim to beat markers (uncheck if the output audio is too short.)",
|
302 |
+
# value=True
|
303 |
+
# )
|
304 |
|
305 |
+
# beat_unmask_dur = gr.Slider(
|
306 |
+
# label="duration",
|
307 |
+
# minimum=0.0,
|
308 |
+
# maximum=3.0,
|
309 |
+
# value=0.07
|
310 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
notes_text = gr.Textbox(
|
314 |
label="type any notes about the generated audio here",
|
|
|
321 |
interactive=False
|
322 |
)
|
323 |
|
|
|
324 |
thank_you = gr.Markdown("")
|
325 |
+
|
|
|
326 |
# connect widgets
|
327 |
vamp_button.click(
|
328 |
fn=vamp,
|
329 |
+
inputs={
|
330 |
+
input_audio,
|
331 |
+
num_steps,
|
332 |
+
init_temp, final_temp,
|
333 |
+
prefix_s, suffix_s,
|
334 |
+
rand_mask_intensity,
|
335 |
+
periodic_p, periodic_w,
|
336 |
+
n_conditioning_codebooks,
|
337 |
+
dropout,
|
338 |
+
use_coarse2fine,
|
339 |
+
stretch_factor
|
340 |
+
},
|
341 |
outputs=[output_audio, audio_mask],
|
342 |
api_name="vamp"
|
343 |
)
|
344 |
|
345 |
save_button.click(
|
346 |
fn=save_vamp,
|
347 |
+
inputs={
|
348 |
+
input_audio,
|
349 |
+
num_steps,
|
350 |
+
init_temp, final_temp,
|
351 |
+
prefix_s, suffix_s,
|
352 |
+
rand_mask_intensity,
|
353 |
+
periodic_p, periodic_w,
|
354 |
+
n_conditioning_codebooks,
|
355 |
+
dropout,
|
356 |
+
use_coarse2fine,
|
357 |
+
stretch_factor,
|
358 |
+
notes_text
|
359 |
+
},
|
360 |
outputs=[thank_you, download_file]
|
361 |
)
|
362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
demo.launch(share=True, enable_queue=False, debug=True)
|
env/alias.sh
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
alias cleanup="pkill python && echo -en '\e[?25h'"
|
2 |
-
alias stage="python ./scripts/utils/stage.py"
|
3 |
-
alias fix_cursor="echo -en '\e[?25h'"
|
|
|
|
|
|
|
|
env/data.sh
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
export PATH_TO_DATA=~/data
|
2 |
-
|
3 |
-
if [[ $(hostname) == "oon17" ]]; then
|
4 |
-
export PATH_TO_DATA=/data/
|
5 |
-
fi
|
6 |
-
|
7 |
-
if [[ $(hostname) == "oon19" ]]; then
|
8 |
-
export PATH_TO_DATA=/home/prem/shared/data/
|
9 |
-
fi
|
10 |
-
|
11 |
-
if [[ $(hostname) == "lucas-ssound-trt-vm" ]]; then
|
12 |
-
export PATH_TO_DATA=~/data
|
13 |
-
fi
|
14 |
-
|
15 |
-
if [[ $(hostname) == "a100-ssound" ]]; then
|
16 |
-
export PATH_TO_DATA=~/data
|
17 |
-
fi
|
18 |
-
|
19 |
-
if [[ $(hostname) == "oon25" ]]; then
|
20 |
-
export PATH_TO_DATA=/data
|
21 |
-
fi
|
22 |
-
|
23 |
-
if [[ $(hostname) == "macbook-pro-2.lan" ]]; then
|
24 |
-
export PATH_TO_DATA=~/data
|
25 |
-
fi
|
26 |
-
|
27 |
-
if [[ $(hostname) == "oon11" ]]; then
|
28 |
-
export PATH_TO_DATA=/data2/syncthing_lucas/data
|
29 |
-
fi
|
30 |
-
|
31 |
-
if [[ $(hostname) == "oon12" ]]; then
|
32 |
-
export PATH_TO_DATA=/data
|
33 |
-
fi
|
34 |
-
if [[ $(hostname) == "oon26" ]]; then
|
35 |
-
export PATH_TO_DATA=/data
|
36 |
-
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
env/entry_script.sh
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
#!/bin/bash
|
2 |
-
set -e
|
3 |
-
|
4 |
-
if [ -z "${USER}" ]; then
|
5 |
-
echo "We need USER to be set!"; exit 100
|
6 |
-
fi
|
7 |
-
|
8 |
-
# check if host uid and gid are set
|
9 |
-
if [ -z "${HOST_USER_ID}" ]; then
|
10 |
-
echo "Please set HOST_USER_ID env. variables to continue." ; exit 0
|
11 |
-
fi
|
12 |
-
|
13 |
-
if [ -z "${HOST_USER_GID}" ]; then
|
14 |
-
echo "Please set HOST_USER_GID env. variables to continue." ; exit 0
|
15 |
-
fi
|
16 |
-
|
17 |
-
USER_ID=$HOST_USER_ID
|
18 |
-
USER_GID=$HOST_USER_GID
|
19 |
-
USER_HOME=/u/home
|
20 |
-
|
21 |
-
# modify uid and gid to match host
|
22 |
-
sed -i -e "s/^${USER}:\([^:]*\):[0-9]*:[0-9]*/${USER}:\1:${USER_ID}:${USER_GID}/" /etc/passwd
|
23 |
-
|
24 |
-
# create a group for host gid
|
25 |
-
groupadd -f --gid "${USER_GID}" "host_group"
|
26 |
-
|
27 |
-
chown $USER_ID $USER_HOME
|
28 |
-
chown $USER_ID /u/home/.zshrc
|
29 |
-
chown $USER_ID /u/home/.oh-my-zsh
|
30 |
-
|
31 |
-
mkdir -p /u/home/.cache
|
32 |
-
chown -R $USER_ID:$USER_GID /u/home/.cache/
|
33 |
-
|
34 |
-
_term() {
|
35 |
-
echo "Caught SIGTERM signal!"
|
36 |
-
kill -TERM "$child" 2>/dev/null
|
37 |
-
}
|
38 |
-
|
39 |
-
trap _term SIGTERM
|
40 |
-
|
41 |
-
su -p "${USER}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
env/setup.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
# This script guides the user through setting up their env.sh
|
2 |
-
# if env.sh does not exist. Should have no dependencies other
|
3 |
-
# than Python standard library.
|
4 |
-
import shlex
|
5 |
-
import socket
|
6 |
-
import subprocess
|
7 |
-
import textwrap
|
8 |
-
|
9 |
-
|
10 |
-
def run(cmd):
|
11 |
-
return subprocess.check_output(shlex.split(cmd)).decode("utf-8")
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
print()
|
17 |
-
print("4. Setting up paths.")
|
18 |
-
print("--------------------")
|
19 |
-
|
20 |
-
PATH_TO_RUNS = input("Where runs should go (default:./runs/): ") or "./runs/"
|
21 |
-
TENSORBOARD_PATH = (
|
22 |
-
input("Bucket/dir for tensorboard logs (default=PATH_TO_RUNS): ") or PATH_TO_RUNS
|
23 |
-
)
|
24 |
-
|
25 |
-
with open("env/data.sh") as f:
|
26 |
-
data_script = f.read()
|
27 |
-
|
28 |
-
write_to_data_sh = False
|
29 |
-
if socket.gethostname() not in data_script:
|
30 |
-
print("Looks like the data path for this machine is not setup.")
|
31 |
-
PATH_TO_DATA = input(f"Path to data on {socket.gethostname()}: ") or "~/data"
|
32 |
-
|
33 |
-
data_command = f"""
|
34 |
-
if [[ $(hostname) == "{socket.gethostname()}" ]]; then
|
35 |
-
export PATH_TO_DATA={PATH_TO_DATA}
|
36 |
-
fi
|
37 |
-
"""
|
38 |
-
write_to_data_sh = True
|
39 |
-
|
40 |
-
|
41 |
-
print()
|
42 |
-
print("5. Setting up Papaya")
|
43 |
-
print("-----------------------------------------")
|
44 |
-
|
45 |
-
PAPAYA_USER_TOKEN = input("Papaya user token: ") or "undefined"
|
46 |
-
|
47 |
-
env_script = f"""
|
48 |
-
source env/alias.sh
|
49 |
-
source env/data.sh
|
50 |
-
export GITHUB_TOKEN={GITHUB_TOKEN}
|
51 |
-
|
52 |
-
export PAPAYA_USER_TOKEN={PAPAYA_USER_TOKEN}
|
53 |
-
|
54 |
-
export HOST_USER_ID=$(id -u)
|
55 |
-
export HOST_USER_GID=$(id -g)
|
56 |
-
|
57 |
-
export JUPYTER_TOKEN={JUPYTER_TOKEN}
|
58 |
-
export JUPYTER_PORT={JUPYTER_PORT}
|
59 |
-
export TENSORBOARD_PORT={TENSORBOARD_PORT}
|
60 |
-
|
61 |
-
export PATH_TO_RUNS={PATH_TO_RUNS}
|
62 |
-
export TENSORBOARD_PATH={TENSORBOARD_PATH}
|
63 |
-
"""
|
64 |
-
|
65 |
-
print()
|
66 |
-
print("6. Potential file contents.")
|
67 |
-
print("---------------------------")
|
68 |
-
|
69 |
-
print("env/env.sh: \n")
|
70 |
-
print("##################")
|
71 |
-
print(env_script)
|
72 |
-
print("##################")
|
73 |
-
|
74 |
-
if write_to_data_sh:
|
75 |
-
data_script += data_command
|
76 |
-
|
77 |
-
print("env/data.sh:")
|
78 |
-
print("##################")
|
79 |
-
print(data_script)
|
80 |
-
print("##################")
|
81 |
-
|
82 |
-
print()
|
83 |
-
write_to_files = input("Write to file [yn]? ") or "n"
|
84 |
-
if write_to_files == "y":
|
85 |
-
with open("env/env.sh", "w") as f:
|
86 |
-
f.write(env_script.strip())
|
87 |
-
with open("env/data.sh", "w") as f:
|
88 |
-
f.write(data_script.strip())
|
89 |
-
|
90 |
-
print()
|
91 |
-
print("8. Finalize setup.")
|
92 |
-
print("------------------")
|
93 |
-
print("Run the following command to complete setup.")
|
94 |
-
print("source env/env.sh")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/exp/train.py
CHANGED
@@ -18,6 +18,8 @@ from tensorboardX import SummaryWriter
|
|
18 |
|
19 |
import vampnet
|
20 |
from vampnet.modules.transformer import VampNet
|
|
|
|
|
21 |
from lac.model.lac import LAC
|
22 |
|
23 |
|
@@ -322,7 +324,10 @@ def train(
|
|
322 |
n_batch = z.shape[0]
|
323 |
r = rng.draw(n_batch)[:, 0].to(accel.device)
|
324 |
|
325 |
-
|
|
|
|
|
|
|
326 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
327 |
|
328 |
dtype = torch.bfloat16 if accel.amp else None
|
@@ -331,14 +336,12 @@ def train(
|
|
331 |
# for mask mode
|
332 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
333 |
|
334 |
-
target =
|
335 |
z[:, vn.n_conditioning_codebooks :, :],
|
336 |
-
n_codebooks=vn.n_predict_codebooks,
|
337 |
)
|
338 |
|
339 |
-
flat_mask =
|
340 |
mask[:, vn.n_conditioning_codebooks :, :],
|
341 |
-
n_codebooks=vn.n_predict_codebooks,
|
342 |
)
|
343 |
|
344 |
if vn.noise_mode == "mask":
|
@@ -398,21 +401,22 @@ def train(
|
|
398 |
n_batch = z.shape[0]
|
399 |
r = rng.draw(n_batch)[:, 0].to(accel.device)
|
400 |
|
401 |
-
|
|
|
|
|
|
|
402 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
403 |
|
404 |
z_hat = model(z_mask_latent, r)
|
405 |
# for mask mode
|
406 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
407 |
|
408 |
-
target =
|
409 |
z[:, vn.n_conditioning_codebooks :, :],
|
410 |
-
n_codebooks=vn.n_predict_codebooks,
|
411 |
)
|
412 |
|
413 |
-
flat_mask =
|
414 |
-
mask[:, vn.n_conditioning_codebooks :, :]
|
415 |
-
n_codebooks=vn.n_predict_codebooks,
|
416 |
)
|
417 |
|
418 |
output = {}
|
@@ -514,14 +518,12 @@ def train(
|
|
514 |
def save_imputation(self, z: torch.Tensor):
|
515 |
n_prefix = int(z.shape[-1] * 0.25)
|
516 |
n_suffix = int(z.shape[-1] * 0.25)
|
517 |
-
downsample_factor = None
|
518 |
|
519 |
vn = accel.unwrap(model)
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
)
|
525 |
|
526 |
imputed_noisy = vn.to_signal(z_mask, codec)
|
527 |
imputed_true = vn.to_signal(z, codec)
|
@@ -574,9 +576,11 @@ def train(
|
|
574 |
|
575 |
r = torch.linspace(0.1, 0.95, len(val_idx)).to(accel.device)
|
576 |
|
577 |
-
n_batch = z.shape[0]
|
578 |
|
579 |
-
|
|
|
|
|
|
|
580 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
581 |
|
582 |
z_hat = model(z_mask_latent, r)
|
@@ -584,7 +588,7 @@ def train(
|
|
584 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
585 |
|
586 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
587 |
-
z_pred =
|
588 |
z_pred = torch.cat([z[:, : vn.n_conditioning_codebooks, :], z_pred], dim=1)
|
589 |
|
590 |
generated = vn.to_signal(z_pred, codec)
|
|
|
18 |
|
19 |
import vampnet
|
20 |
from vampnet.modules.transformer import VampNet
|
21 |
+
from vampnet.util import codebook_unflatten, codebook_flatten
|
22 |
+
from vampnet import mask as pmask
|
23 |
from lac.model.lac import LAC
|
24 |
|
25 |
|
|
|
324 |
n_batch = z.shape[0]
|
325 |
r = rng.draw(n_batch)[:, 0].to(accel.device)
|
326 |
|
327 |
+
mask = pmask.random(z, r)
|
328 |
+
mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
|
329 |
+
z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)
|
330 |
+
|
331 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
332 |
|
333 |
dtype = torch.bfloat16 if accel.amp else None
|
|
|
336 |
# for mask mode
|
337 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
338 |
|
339 |
+
target = codebook_flatten(
|
340 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
341 |
)
|
342 |
|
343 |
+
flat_mask = codebook_flatten(
|
344 |
mask[:, vn.n_conditioning_codebooks :, :],
|
|
|
345 |
)
|
346 |
|
347 |
if vn.noise_mode == "mask":
|
|
|
401 |
n_batch = z.shape[0]
|
402 |
r = rng.draw(n_batch)[:, 0].to(accel.device)
|
403 |
|
404 |
+
mask = pmask.random(z, r)
|
405 |
+
mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
|
406 |
+
z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)
|
407 |
+
|
408 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
409 |
|
410 |
z_hat = model(z_mask_latent, r)
|
411 |
# for mask mode
|
412 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
413 |
|
414 |
+
target = codebook_flatten(
|
415 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
416 |
)
|
417 |
|
418 |
+
flat_mask = codebook_flatten(
|
419 |
+
mask[:, vn.n_conditioning_codebooks :, :]
|
|
|
420 |
)
|
421 |
|
422 |
output = {}
|
|
|
518 |
def save_imputation(self, z: torch.Tensor):
|
519 |
n_prefix = int(z.shape[-1] * 0.25)
|
520 |
n_suffix = int(z.shape[-1] * 0.25)
|
|
|
521 |
|
522 |
vn = accel.unwrap(model)
|
523 |
|
524 |
+
mask = pmask.inpaint(z, n_prefix, n_suffix)
|
525 |
+
mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
|
526 |
+
z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)
|
|
|
527 |
|
528 |
imputed_noisy = vn.to_signal(z_mask, codec)
|
529 |
imputed_true = vn.to_signal(z, codec)
|
|
|
576 |
|
577 |
r = torch.linspace(0.1, 0.95, len(val_idx)).to(accel.device)
|
578 |
|
|
|
579 |
|
580 |
+
mask = pmask.random(z, r)
|
581 |
+
mask = pmask.codebook_unmask(mask, vn.n_conditioning_codebooks)
|
582 |
+
z_mask, mask = pmask.apply_mask(z, mask, vn.mask_token)
|
583 |
+
|
584 |
z_mask_latent = vn.embedding.from_codes(z_mask, codec)
|
585 |
|
586 |
z_hat = model(z_mask_latent, r)
|
|
|
588 |
z_hat = vn.add_truth_to_logits(z, z_hat, mask)
|
589 |
|
590 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
591 |
+
z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
|
592 |
z_pred = torch.cat([z[:, : vn.n_conditioning_codebooks, :], z_pred], dim=1)
|
593 |
|
594 |
generated = vn.to_signal(z_pred, codec)
|
scripts/utils/vamp_folder.py
CHANGED
@@ -95,19 +95,6 @@ def opus(sig, interface, bitrate=128):
|
|
95 |
)
|
96 |
return sig
|
97 |
|
98 |
-
def token_noise(ratio=1.0):
|
99 |
-
def wrapper(sig, interface):
|
100 |
-
z = interface.encode(sig)
|
101 |
-
r = interface.coarse.invgamma(ratio).to(interface.device)
|
102 |
-
print(f'adding noise with ratio {ratio}')
|
103 |
-
z, mask = interface.coarse.add_noise(
|
104 |
-
z,
|
105 |
-
r,
|
106 |
-
noise_mode="random"
|
107 |
-
)
|
108 |
-
return interface.to_signal(z)
|
109 |
-
return wrapper
|
110 |
-
|
111 |
def mask_ratio_1_step(ratio=1.0):
|
112 |
def wrapper(sig, interface):
|
113 |
r = interface.coarse.invgamma(ratio).to(interface.device)
|
|
|
95 |
)
|
96 |
return sig
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
def mask_ratio_1_step(ratio=1.0):
|
99 |
def wrapper(sig, interface):
|
100 |
r = interface.coarse.invgamma(ratio).to(interface.device)
|
vampnet/interface.py
CHANGED
@@ -9,6 +9,8 @@ import tqdm
|
|
9 |
|
10 |
from .modules.transformer import VampNet
|
11 |
from .beats import WaveBeat
|
|
|
|
|
12 |
from lac.model.lac import LAC
|
13 |
|
14 |
|
@@ -20,14 +22,6 @@ def signal_concat(
|
|
20 |
return AudioSignal(audio_data, sample_rate=audio_signals[0].sample_rate)
|
21 |
|
22 |
|
23 |
-
class SignalPrompt:
|
24 |
-
|
25 |
-
def __init__(self, signal: AudioSignal):
|
26 |
-
self.sig = signal
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
class Interface(torch.nn.Module):
|
32 |
def __init__(
|
33 |
self,
|
@@ -100,10 +94,6 @@ class Interface(torch.nn.Module):
|
|
100 |
def to_signal(self, z: torch.Tensor):
|
101 |
return self.coarse.to_signal(z, self.codec)
|
102 |
|
103 |
-
def autoencode(self, signal: AudioSignal):
|
104 |
-
z = self.encode(signal)
|
105 |
-
return self.to_signal(z)
|
106 |
-
|
107 |
def preprocess(self, signal: AudioSignal):
|
108 |
signal = (
|
109 |
signal.clone()
|
@@ -249,182 +239,30 @@ class Interface(torch.nn.Module):
|
|
249 |
fine_z = torch.cat(fine_z, dim=-1)
|
250 |
return fine_z[:, :, :length].clone()
|
251 |
|
252 |
-
|
253 |
def coarse_vamp(
|
254 |
self,
|
255 |
-
|
256 |
-
|
257 |
-
suffix_dur_s: float = 0.0,
|
258 |
-
num_vamps: int = 1,
|
259 |
-
downsample_factor: int = None,
|
260 |
-
stretch_factor: int = None,
|
261 |
-
periodic_width: int = 1,
|
262 |
-
periodic_dropout=0.0,
|
263 |
-
periodic_width_dropout=0.0,
|
264 |
-
intensity: float = 1.0,
|
265 |
-
debug=False,
|
266 |
-
swap_prefix_suffix=False,
|
267 |
-
ext_mask=None,
|
268 |
-
n_conditioning_codebooks=None,
|
269 |
-
verbose=False,
|
270 |
return_mask=False,
|
271 |
**kwargs
|
272 |
):
|
273 |
-
z = self.encode(signal)
|
274 |
-
|
275 |
# coarse z
|
276 |
cz = z[:, : self.coarse.n_codebooks, :].clone()
|
277 |
-
c_seq_len = cz.shape[-1]
|
278 |
-
n_prefix = self.s2t(prefix_dur_s)
|
279 |
-
n_suffix = self.s2t(suffix_dur_s)
|
280 |
-
|
281 |
-
|
282 |
-
# hmm, should be a better way to do this? think we just need a mask builder class
|
283 |
-
add_random_periodic_offset = True
|
284 |
-
|
285 |
-
if stretch_factor is not None and stretch_factor > 1:
|
286 |
-
print(f"stretching by {stretch_factor}")
|
287 |
-
assert stretch_factor >= 1, "stretch factor must be >= 1"
|
288 |
-
cz = cz.repeat_interleave(stretch_factor, dim=-1)
|
289 |
-
|
290 |
-
# the downsample factor is now relative to the stretched sequence
|
291 |
-
assert downsample_factor is None or downsample_factor <= 2, "downsample_factor must be None when stretch_factor is not None"
|
292 |
-
|
293 |
-
downsample_factor = stretch_factor
|
294 |
-
add_random_periodic_offset = False
|
295 |
-
|
296 |
-
assert n_prefix == 0 and n_suffix == 0, "prefix and suffix must be 0 when stretch_factor is not None"
|
297 |
-
assert ext_mask is None, "ext_mask must be None when stretch_factor is not None"
|
298 |
-
|
299 |
-
# trim cz to the original length
|
300 |
-
cz = cz[:, :, :c_seq_len]
|
301 |
-
|
302 |
-
|
303 |
assert cz.shape[-1] <= self.s2t(self.coarse.chunk_size_s), f"the sequence of tokens provided must match the one specified in the coarse chunk size, but got {cz.shape[-1]} and {self.s2t(self.coarse.chunk_size_s)}"
|
304 |
-
assert n_prefix + n_suffix < c_seq_len, "prefix and suffix must be smaller than the chunk size"
|
305 |
-
|
306 |
-
if swap_prefix_suffix:
|
307 |
-
# swap the prefix and suffix
|
308 |
-
assert n_prefix == n_suffix, "prefix and suffix must be the same size for now"
|
309 |
-
cz[:, :, :n_prefix], cz[:, :, c_seq_len-n_suffix:] = cz[:, :, c_seq_len-n_suffix:], cz[:, :, :n_prefix].clone()
|
310 |
-
|
311 |
-
# we'll keep the final codes sequence here
|
312 |
-
c_vamp = {
|
313 |
-
'prefix': [cz[:, :, :n_prefix].clone()],
|
314 |
-
'suffix': [cz[:, :, c_seq_len-n_suffix:].clone()]
|
315 |
-
}
|
316 |
-
|
317 |
-
_cz = cz.clone()
|
318 |
-
cz_mask = None
|
319 |
-
range_fn = tqdm.trange if verbose else range
|
320 |
-
for _ in range_fn(num_vamps):
|
321 |
-
# add noise
|
322 |
-
cz_masked, cz_mask = self.coarse.add_noise(
|
323 |
-
_cz, r=1.0-intensity,
|
324 |
-
n_prefix=n_prefix,
|
325 |
-
n_suffix=n_suffix,
|
326 |
-
downsample_factor=downsample_factor,
|
327 |
-
periodic_width=periodic_width,
|
328 |
-
periodic_dropout=periodic_dropout,
|
329 |
-
add_random_periodic_offset=add_random_periodic_offset,
|
330 |
-
periodic_width_dropout=periodic_width_dropout,
|
331 |
-
mask=cz_mask,
|
332 |
-
ext_mask=ext_mask,
|
333 |
-
n_conditioning_codebooks=n_conditioning_codebooks
|
334 |
-
)
|
335 |
-
if debug:
|
336 |
-
print("tokens to infer")
|
337 |
-
self.to_signal(cz_masked).cpu().widget()
|
338 |
-
|
339 |
-
# sample!
|
340 |
-
if debug:
|
341 |
-
print(f"mask: {cz_mask[:,0,:]}")
|
342 |
-
print(f"z: {_cz[:,0,:]}")
|
343 |
-
cz_sampled = self.coarse.sample(
|
344 |
-
codec=self.codec,
|
345 |
-
time_steps=_cz.shape[-1],
|
346 |
-
start_tokens=_cz,
|
347 |
-
mask=cz_mask,
|
348 |
-
return_signal=False,
|
349 |
-
**kwargs
|
350 |
-
)
|
351 |
-
|
352 |
-
if debug:
|
353 |
-
print("tokens sampled")
|
354 |
-
self.to_signal(cz_sampled).cpu().widget()
|
355 |
-
|
356 |
-
# the z that was generated
|
357 |
-
cz_generated = cz_sampled[:, :, n_prefix:c_seq_len-n_suffix].clone()
|
358 |
-
n_generated = cz_generated.shape[-1]
|
359 |
-
|
360 |
-
# create the new prefix and suffix
|
361 |
-
# we'll make sure that the number of prefix and suffix
|
362 |
-
# tokens is the same as the original
|
363 |
-
# but we do want to advance the sequence as much as we can
|
364 |
-
if n_prefix > 0 and n_suffix > 0:
|
365 |
-
# we have both prefix and suffix, so we'll split the generated
|
366 |
-
# codes in two halves
|
367 |
-
prefix_start_idx = n_generated // 2
|
368 |
-
prefix_stop_idx = prefix_start_idx + n_prefix
|
369 |
-
assert prefix_start_idx >= 0, "internal error"
|
370 |
-
|
371 |
-
suffix_start_idx = n_prefix + n_generated // 2
|
372 |
-
suffix_stop_idx = suffix_start_idx + n_suffix
|
373 |
-
assert suffix_stop_idx <= cz_sampled.shape[-1], "internal error"
|
374 |
-
|
375 |
-
cz_new_prefix = cz_sampled[:, :, prefix_start_idx:prefix_stop_idx].clone()
|
376 |
-
cz_new_suffix = cz_sampled[:, :, suffix_start_idx:suffix_stop_idx].clone()
|
377 |
-
|
378 |
-
c_vamp['prefix'].append(cz_generated[:,:,:n_generated//2])
|
379 |
-
c_vamp['suffix'].insert(0, cz_generated[:,:,n_generated//2:])
|
380 |
-
|
381 |
-
elif n_prefix > 0:
|
382 |
-
# we only have a prefix
|
383 |
-
prefix_start_idx = n_generated
|
384 |
-
prefix_stop_idx = prefix_start_idx + n_prefix
|
385 |
-
|
386 |
-
cz_new_prefix = cz_sampled[:, :, prefix_start_idx:prefix_stop_idx].clone()
|
387 |
-
cz_new_suffix = _cz[:, :, :0].clone()
|
388 |
-
|
389 |
-
|
390 |
-
c_vamp['prefix'].append(cz_generated)
|
391 |
|
392 |
-
|
393 |
-
# we only have a suffix, so everything starting at 0 is generated
|
394 |
-
suffix_stop_idx = max(n_generated, n_suffix)
|
395 |
-
suffix_start_idx = suffix_stop_idx - n_suffix
|
396 |
|
397 |
-
|
398 |
-
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
c_vamp['prefix'].append(cz_generated)
|
409 |
-
|
410 |
-
|
411 |
-
n_to_insert = c_seq_len - (cz_new_prefix.shape[-1] + cz_new_suffix.shape[-1])
|
412 |
-
to_insert = torch.zeros(cz_new_prefix.shape[0], cz_new_prefix.shape[1], n_to_insert).long().to(self.device)
|
413 |
-
_cz = torch.cat([cz_new_prefix, to_insert, cz_new_suffix], dim=-1)
|
414 |
-
|
415 |
-
to_insert_mask = torch.zeros_like(_cz).long().to(self.device)
|
416 |
-
to_insert_mask[:, :, cz_new_prefix.shape[-1]:cz_new_prefix.shape[-1]+n_to_insert] = 1
|
417 |
-
cz_mask = (cz_mask + to_insert_mask).bool().long()
|
418 |
-
|
419 |
-
|
420 |
-
if debug:
|
421 |
-
print("tokens to infer next round (area to insert in the middle)")
|
422 |
-
self.to_signal(_cz).cpu().widget()
|
423 |
-
|
424 |
-
|
425 |
-
prefix_codes = torch.cat(c_vamp['prefix'], dim=-1)
|
426 |
-
suffix_codes = torch.cat(c_vamp['suffix'], dim=-1)
|
427 |
-
c_vamp = torch.cat([prefix_codes, suffix_codes], dim=-1)
|
428 |
|
429 |
# replace the mask token in cz_masked with random tokens
|
430 |
# so that we can decode it
|
@@ -433,132 +271,61 @@ class Interface(torch.nn.Module):
|
|
433 |
|
434 |
return c_vamp
|
435 |
|
436 |
-
# create a variation of an audio signal
|
437 |
-
def variation(
|
438 |
-
self,
|
439 |
-
signal: AudioSignal,
|
440 |
-
verbose: bool = False,
|
441 |
-
beat_mask: bool = False,
|
442 |
-
beat_mask_kwargs: dict = {},
|
443 |
-
**kwargs
|
444 |
-
):
|
445 |
-
signal = signal.clone()
|
446 |
|
447 |
-
|
448 |
-
|
449 |
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
# overlap-add
|
457 |
-
overlap_hop_ratio = 1.0
|
458 |
-
hop_duration = self.coarse.chunk_size_s * overlap_hop_ratio
|
459 |
-
original_length = signal.length
|
460 |
-
|
461 |
-
signal.zero_pad_to(req_len)
|
462 |
-
|
463 |
-
# window the signal
|
464 |
-
signal = signal.collect_windows(
|
465 |
-
window_duration=self.coarse.chunk_size_s,
|
466 |
-
hop_duration=hop_duration,
|
467 |
-
)
|
468 |
|
469 |
-
|
470 |
-
range_fn = range if not verbose else tqdm.trange
|
471 |
-
for i in range_fn(signal.batch_size):
|
472 |
-
sig = AudioSignal(
|
473 |
-
signal.samples[i,...], signal.sample_rate
|
474 |
-
)
|
475 |
-
sig.to(self.device)
|
476 |
-
|
477 |
-
if beat_mask:
|
478 |
-
ext_mask = self.make_beat_mask(sig, **beat_mask_kwargs)
|
479 |
-
else:
|
480 |
-
ext_mask = None
|
481 |
-
|
482 |
-
out_z = self.coarse_vamp(
|
483 |
-
sig,
|
484 |
-
num_vamps=1,
|
485 |
-
swap_prefix_suffix=False,
|
486 |
-
ext_mask=ext_mask,
|
487 |
-
verbose=verbose,
|
488 |
-
**kwargs
|
489 |
-
)
|
490 |
-
if self.c2f is not None:
|
491 |
-
out_z = self.coarse_to_fine(out_z)
|
492 |
-
out_sig = self.to_signal(out_z).cpu()
|
493 |
|
494 |
-
|
495 |
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
# the beat unless the signal is exactly the right length
|
505 |
-
def loop(
|
506 |
-
self,
|
507 |
-
signal: AudioSignal,
|
508 |
-
prefix_dur_s: float = 0.0,
|
509 |
-
suffix_dur_s: float = 0.0,
|
510 |
-
num_loops: int = 4,
|
511 |
-
# overlap_hop_ratio: float = 1.0, # TODO: should this be fixed to 1.0? or should we overlap and replace instead of overlap add
|
512 |
-
verbose: bool = False,
|
513 |
-
return_mask: bool = False,
|
514 |
-
**kwargs,
|
515 |
-
):
|
516 |
-
assert prefix_dur_s >= 0.0, "prefix duration must be >= 0"
|
517 |
-
assert suffix_dur_s >= 0.0, "suffix duration must be >= 0"
|
518 |
-
signal = self.preprocess(signal)
|
519 |
-
|
520 |
-
suffix_len_samples = int(suffix_dur_s * signal.sample_rate)
|
521 |
-
prefix_len_tokens = self.s2t(prefix_dur_s)
|
522 |
-
suffix_len_tokens = self.s2t(suffix_dur_s)
|
523 |
-
|
524 |
-
loops = [
|
525 |
-
# add everything but the suffix a the beggining
|
526 |
-
self.encode(signal.clone().trim(before=0, after=suffix_len_samples))
|
527 |
-
]
|
528 |
-
range_fn = range if not verbose else tqdm.trange
|
529 |
-
for i in range_fn(num_loops):
|
530 |
-
is_flipped = i % 2 == 0
|
531 |
-
vamped = self.coarse_vamp(
|
532 |
-
signal,
|
533 |
-
prefix_dur_s=prefix_dur_s,
|
534 |
-
suffix_dur_s=suffix_dur_s,
|
535 |
-
swap_prefix_suffix=is_flipped,
|
536 |
-
return_mask=return_mask,
|
537 |
-
**kwargs
|
538 |
-
)
|
539 |
-
if return_mask:
|
540 |
-
vamped, mask = vamped
|
541 |
-
|
542 |
-
# if we're flipped, we trim the prefix off of the end
|
543 |
-
# otherwise we trim the suffix off of the end
|
544 |
-
trim_len = prefix_len_tokens if is_flipped else suffix_len_tokens
|
545 |
-
vamped = vamped[:, :, :vamped.shape[-1]-trim_len]
|
546 |
-
|
547 |
-
loops.append(vamped)
|
548 |
-
|
549 |
-
if is_flipped:
|
550 |
-
loops.append(
|
551 |
-
# add everything but the prefix at the end
|
552 |
-
self.encode(signal.clone())
|
553 |
-
)
|
554 |
-
|
555 |
-
if self.c2f is not None:
|
556 |
-
loops = [self.coarse_to_fine(l) for l in loops]
|
557 |
|
558 |
-
|
|
|
559 |
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
return signal_concat(loops)
|
564 |
|
|
|
|
|
|
|
|
9 |
|
10 |
from .modules.transformer import VampNet
|
11 |
from .beats import WaveBeat
|
12 |
+
from .mask import *
|
13 |
+
|
14 |
from lac.model.lac import LAC
|
15 |
|
16 |
|
|
|
22 |
return AudioSignal(audio_data, sample_rate=audio_signals[0].sample_rate)
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class Interface(torch.nn.Module):
|
26 |
def __init__(
|
27 |
self,
|
|
|
94 |
def to_signal(self, z: torch.Tensor):
|
95 |
return self.coarse.to_signal(z, self.codec)
|
96 |
|
|
|
|
|
|
|
|
|
97 |
def preprocess(self, signal: AudioSignal):
|
98 |
signal = (
|
99 |
signal.clone()
|
|
|
239 |
fine_z = torch.cat(fine_z, dim=-1)
|
240 |
return fine_z[:, :, :length].clone()
|
241 |
|
|
|
242 |
def coarse_vamp(
|
243 |
self,
|
244 |
+
z,
|
245 |
+
mask,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
return_mask=False,
|
247 |
**kwargs
|
248 |
):
|
|
|
|
|
249 |
# coarse z
|
250 |
cz = z[:, : self.coarse.n_codebooks, :].clone()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
assert cz.shape[-1] <= self.s2t(self.coarse.chunk_size_s), f"the sequence of tokens provided must match the one specified in the coarse chunk size, but got {cz.shape[-1]} and {self.s2t(self.coarse.chunk_size_s)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
+
mask = mask[:, : self.coarse.n_codebooks, :]
|
|
|
|
|
|
|
254 |
|
255 |
+
cz_masked, mask = apply_mask(cz, mask, self.coarse.mask_token)
|
256 |
+
cz_masked = cz_masked[:, : self.coarse.n_codebooks, :]
|
257 |
|
258 |
+
c_vamp = self.coarse.sample(
|
259 |
+
codec=self.codec,
|
260 |
+
time_steps=cz.shape[-1],
|
261 |
+
start_tokens=cz,
|
262 |
+
mask=mask,
|
263 |
+
return_signal=False,
|
264 |
+
**kwargs
|
265 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
|
267 |
# replace the mask token in cz_masked with random tokens
|
268 |
# so that we can decode it
|
|
|
271 |
|
272 |
return c_vamp
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
if __name__ == "__main__":
|
276 |
+
import audiotools as at
|
277 |
|
278 |
+
interface = Interface(
|
279 |
+
coarse_ckpt="./models/spotdl/coarse.pth",
|
280 |
+
coarse2fine_ckpt="./models/spotdl/c2f.pth",
|
281 |
+
codec_ckpt="./models/spotdl/codec.pth",
|
282 |
+
device="cpu"
|
283 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
+
sig = at.AudioSignal('cali.mp3', duration=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
+
z = interface.encode(sig)
|
288 |
|
289 |
+
mask = linear_random(z, 0.8)
|
290 |
+
print(mask)
|
291 |
+
mask = mask_and(
|
292 |
+
mask, inpaint(
|
293 |
+
z,
|
294 |
+
interface.s2t(3),
|
295 |
+
interface.s2t(3)
|
296 |
+
)
|
297 |
+
)
|
298 |
+
print(mask)
|
299 |
+
mask = mask_and(
|
300 |
+
mask, periodic_mask(
|
301 |
+
z,
|
302 |
+
7,
|
303 |
+
1,
|
304 |
+
random_roll=True
|
305 |
+
)
|
306 |
+
)
|
307 |
+
mask = dropout(mask, 0.0)
|
308 |
+
mask = codebook_unmask(mask, 0)
|
309 |
+
|
310 |
|
311 |
+
zv, mask_z = interface.coarse_vamp(
|
312 |
+
z,
|
313 |
+
mask=mask,
|
314 |
+
sampling_steps=1,
|
315 |
+
temperature=(0.8,1),
|
316 |
+
return_mask=True
|
317 |
+
)
|
318 |
|
319 |
+
use_coarse2fine = False
|
320 |
+
if use_coarse2fine:
|
321 |
+
zv = interface.coarse_to_fine(zv)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
+
print(mask_z)
|
324 |
+
mask = interface.to_signal(mask_z).cpu()
|
325 |
|
326 |
+
sig = interface.to_signal(zv).cpu()
|
327 |
+
print("done")
|
|
|
|
|
328 |
|
329 |
+
sig.write("output.wav")
|
330 |
+
mask.write("mask.wav")
|
331 |
+
|
vampnet/mask.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .util import scalar_to_batch_tensor
|
6 |
+
|
7 |
+
def _gamma(r):
|
8 |
+
return (r * torch.pi / 2).cos()
|
9 |
+
|
10 |
+
def _invgamma(y):
|
11 |
+
if not torch.is_tensor(y):
|
12 |
+
y = torch.tensor(y)[None]
|
13 |
+
return 2 * y.acos() / torch.pi
|
14 |
+
|
15 |
+
def full_mask(x: torch.Tensor):
|
16 |
+
assert x.ndim == 3, "x must be (batch, n_codebooks, seq)"
|
17 |
+
return torch.ones_like(x).long()
|
18 |
+
|
19 |
+
def empty_mask(x: torch.Tensor):
|
20 |
+
assert x.ndim == 3, "x must be (batch, n_codebooks, seq)"
|
21 |
+
return torch.zeros_like(x).long()
|
22 |
+
|
23 |
+
def apply_mask(
|
24 |
+
x: torch.Tensor,
|
25 |
+
mask: torch.Tensor,
|
26 |
+
mask_token: int
|
27 |
+
):
|
28 |
+
assert mask.ndim == 3, "mask must be (batch, n_codebooks, seq)"
|
29 |
+
assert mask.shape == x.shape, "mask must be same shape as x"
|
30 |
+
assert mask.dtype == torch.long, "mask must be long dtype"
|
31 |
+
assert ~torch.any(mask > 1), "mask must be binary"
|
32 |
+
assert ~torch.any(mask < 0), "mask must be binary"
|
33 |
+
|
34 |
+
fill_x = torch.full_like(x, mask_token)
|
35 |
+
x = x * (1 - mask) + fill_x * mask
|
36 |
+
|
37 |
+
return x, mask
|
38 |
+
|
39 |
+
def random(
|
40 |
+
x: torch.Tensor,
|
41 |
+
r: torch.Tensor
|
42 |
+
):
|
43 |
+
assert x.ndim == 3, "x must be (batch, n_codebooks, seq)"
|
44 |
+
if not isinstance(r, torch.Tensor):
|
45 |
+
r = scalar_to_batch_tensor(r, x.shape[0]).to(x.device)
|
46 |
+
|
47 |
+
r = _gamma(r)[:, None, None]
|
48 |
+
probs = torch.ones_like(x) * r
|
49 |
+
|
50 |
+
mask = torch.bernoulli(probs)
|
51 |
+
mask = mask.round().long()
|
52 |
+
|
53 |
+
return mask
|
54 |
+
|
55 |
+
def linear_random(
|
56 |
+
x: torch.Tensor,
|
57 |
+
r: torch.Tensor,
|
58 |
+
):
|
59 |
+
assert x.ndim == 3, "x must be (batch, n_codebooks, seq)"
|
60 |
+
if not isinstance(r, torch.Tensor):
|
61 |
+
r = scalar_to_batch_tensor(r, x.shape[0]).to(x.device).float()
|
62 |
+
|
63 |
+
probs = torch.ones_like(x).to(x.device).float()
|
64 |
+
# expand to batch and codebook dims
|
65 |
+
probs = probs.expand(x.shape[0], x.shape[1], -1)
|
66 |
+
probs = probs * r
|
67 |
+
|
68 |
+
mask = torch.bernoulli(probs)
|
69 |
+
mask = mask.round().long()
|
70 |
+
|
71 |
+
return mask
|
72 |
+
|
73 |
+
def inpaint(x: torch.Tensor,
|
74 |
+
n_prefix,
|
75 |
+
n_suffix,
|
76 |
+
):
|
77 |
+
assert n_prefix is not None
|
78 |
+
assert n_suffix is not None
|
79 |
+
|
80 |
+
mask = full_mask(x)
|
81 |
+
|
82 |
+
# if we have a prefix or suffix, set their mask prob to 0
|
83 |
+
if n_prefix > 0:
|
84 |
+
if not isinstance(n_prefix, torch.Tensor):
|
85 |
+
n_prefix = scalar_to_batch_tensor(n_prefix, x.shape[0]).to(x.device)
|
86 |
+
for i, n in enumerate(n_prefix):
|
87 |
+
if n > 0:
|
88 |
+
mask[i, :, :n] = 0.0
|
89 |
+
if n_suffix > 0:
|
90 |
+
if not isinstance(n_suffix, torch.Tensor):
|
91 |
+
n_suffix = scalar_to_batch_tensor(n_suffix, x.shape[0]).to(x.device)
|
92 |
+
for i, n in enumerate(n_suffix):
|
93 |
+
if n > 0:
|
94 |
+
mask[i, :, -n:] = 0.0
|
95 |
+
|
96 |
+
|
97 |
+
return mask
|
98 |
+
|
99 |
+
def periodic_mask(x: torch.Tensor,
|
100 |
+
period: int, width: int = 1,
|
101 |
+
random_roll=False,
|
102 |
+
):
|
103 |
+
mask = full_mask(x)
|
104 |
+
if period == 0:
|
105 |
+
return mask
|
106 |
+
|
107 |
+
if not isinstance(period, torch.Tensor):
|
108 |
+
period = scalar_to_batch_tensor(period, x.shape[0])
|
109 |
+
for i, factor in enumerate(period):
|
110 |
+
if factor == 0:
|
111 |
+
continue
|
112 |
+
for j in range(mask.shape[-1]):
|
113 |
+
if j % factor == 0:
|
114 |
+
# figure out how wide the mask should be
|
115 |
+
j_start = max(0, j - width // 2 )
|
116 |
+
j_end = min(mask.shape[-1] - 1, j + width // 2 ) + 1
|
117 |
+
# flip a coin for each position in the mask
|
118 |
+
j_mask = torch.bernoulli(torch.ones(j_end - j_start))
|
119 |
+
assert torch.all(j_mask == 1)
|
120 |
+
j_fill = torch.ones_like(j_mask) * (1 - j_mask)
|
121 |
+
assert torch.all(j_fill == 0)
|
122 |
+
# fill
|
123 |
+
mask[i, :, j_start:j_end] = j_fill
|
124 |
+
if random_roll:
|
125 |
+
# add a random offset to the mask
|
126 |
+
offset = torch.randint(0, period[0], (1,))
|
127 |
+
mask = torch.roll(mask, offset.item(), dims=-1)
|
128 |
+
|
129 |
+
return mask
|
130 |
+
|
131 |
+
def codebook_unmask(
|
132 |
+
mask: torch.Tensor,
|
133 |
+
n_conditioning_codebooks: int
|
134 |
+
):
|
135 |
+
if n_conditioning_codebooks == None:
|
136 |
+
return mask
|
137 |
+
# if we have any conditioning codebooks, set their mask to 0
|
138 |
+
mask = mask.clone()
|
139 |
+
mask[:, :n_conditioning_codebooks, :] = 0
|
140 |
+
return mask
|
141 |
+
|
142 |
+
def mask_and(
|
143 |
+
mask1: torch.Tensor,
|
144 |
+
mask2: torch.Tensor
|
145 |
+
):
|
146 |
+
assert mask1.shape == mask2.shape, "masks must be same shape"
|
147 |
+
return torch.min(mask1, mask2)
|
148 |
+
|
149 |
+
def dropout(
|
150 |
+
mask: torch.Tensor,
|
151 |
+
p: float,
|
152 |
+
):
|
153 |
+
return torch.bernoulli((torch.ones_like(mask) * (1-p)).float()).long() * mask
|
154 |
+
|
155 |
+
def mask_or(
|
156 |
+
mask1: torch.Tensor,
|
157 |
+
mask2: torch.Tensor
|
158 |
+
):
|
159 |
+
assert mask1.shape == mask2.shape, "masks must be same shape"
|
160 |
+
assert mask1.max() <= 1, "mask1 must be binary"
|
161 |
+
assert mask2.max() <= 1, "mask2 must be binary"
|
162 |
+
assert mask1.min() >= 0, "mask1 must be binary"
|
163 |
+
assert mask2.min() >= 0, "mask2 must be binary"
|
164 |
+
return (mask1 + mask2).clamp(0, 1)
|
165 |
+
|
166 |
+
def time_stretch_mask(
|
167 |
+
x: torch.Tensor,
|
168 |
+
stretch_factor: int,
|
169 |
+
mask_token: int
|
170 |
+
):
|
171 |
+
assert stretch_factor >= 1, "stretch factor must be >= 1"
|
172 |
+
c_seq_len = x.shape[-1]
|
173 |
+
x = x.repeat_interleave(stretch_factor, dim=-1)
|
174 |
+
|
175 |
+
# trim cz to the original length
|
176 |
+
x = x[:, :, :c_seq_len]
|
177 |
+
|
178 |
+
mask = periodic_mask(x, stretch_factor, width=1)
|
179 |
+
return apply_mask(x, mask, mask_token)
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
torch.set_printoptions(threshold=10000)
|
184 |
+
|
vampnet/modules/base.py
DELETED
@@ -1,412 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
from typing import Optional
|
3 |
-
from typing import Tuple
|
4 |
-
from typing import Union
|
5 |
-
|
6 |
-
import audiotools as at
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from einops import rearrange
|
11 |
-
from tqdm import tqdm
|
12 |
-
|
13 |
-
from ..util import scalar_to_batch_tensor
|
14 |
-
|
15 |
-
|
16 |
-
def log(t, eps=1e-20):
|
17 |
-
return torch.log(t + eps)
|
18 |
-
|
19 |
-
|
20 |
-
def gumbel_noise(t):
|
21 |
-
noise = torch.zeros_like(t).uniform_(0, 1)
|
22 |
-
return -log(-log(noise))
|
23 |
-
|
24 |
-
|
25 |
-
def gumbel_sample(t, temperature=1.0, dim=-1):
|
26 |
-
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
|
27 |
-
|
28 |
-
|
29 |
-
class VampBase(at.ml.BaseModel):
|
30 |
-
def forward(self, x: torch.Tensor, r: torch.Tensor):
|
31 |
-
raise NotImplementedError
|
32 |
-
|
33 |
-
def add_noise(
|
34 |
-
self,
|
35 |
-
x: torch.Tensor,
|
36 |
-
r: torch.Tensor,
|
37 |
-
random_x: Optional[torch.Tensor] = None,
|
38 |
-
mask: Optional[torch.Tensor] = None,
|
39 |
-
ext_mask: Optional[torch.Tensor] = None,
|
40 |
-
n_prefix: Optional[torch.Tensor] = None,
|
41 |
-
n_suffix: Optional[torch.Tensor] = None,
|
42 |
-
downsample_factor: Optional[int] = None,
|
43 |
-
periodic_width: int = 1,
|
44 |
-
periodic_width_dropout: float = 0.0,
|
45 |
-
periodic_dropout: float = 0.0,
|
46 |
-
add_random_periodic_offset: bool = False, # TODO: should be always false lol this is hacky
|
47 |
-
n_conditioning_codebooks: Optional[int] = None,
|
48 |
-
noise_mode: str = None,
|
49 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
50 |
-
assert x.ndim == 3, "x must be (batch, n_codebooks, seq)"
|
51 |
-
|
52 |
-
if mask is None:
|
53 |
-
if not isinstance(r, torch.Tensor):
|
54 |
-
r = scalar_to_batch_tensor(r, x.shape[0]).to(x.device)
|
55 |
-
r = self.gamma(r)[:, None, None]
|
56 |
-
probs = torch.ones_like(x) * r
|
57 |
-
|
58 |
-
# if we have a prefix or suffix, set their mask prob to 0
|
59 |
-
if n_prefix is not None:
|
60 |
-
if not isinstance(n_prefix, torch.Tensor):
|
61 |
-
n_prefix = scalar_to_batch_tensor(n_prefix, x.shape[0]).to(x.device)
|
62 |
-
for i, n in enumerate(n_prefix):
|
63 |
-
if n > 0:
|
64 |
-
probs[i, :, :n] = 0.0
|
65 |
-
if n_suffix is not None:
|
66 |
-
if not isinstance(n_suffix, torch.Tensor):
|
67 |
-
n_suffix = scalar_to_batch_tensor(n_suffix, x.shape[0]).to(x.device)
|
68 |
-
for i, n in enumerate(n_suffix):
|
69 |
-
if n > 0:
|
70 |
-
probs[i, :, -n:] = 0.0
|
71 |
-
|
72 |
-
# if we have a downsample factor, set the mask prob to 0
|
73 |
-
if downsample_factor is not None and downsample_factor > 0:
|
74 |
-
if not isinstance(downsample_factor, torch.Tensor):
|
75 |
-
downsample_factor = scalar_to_batch_tensor(downsample_factor, x.shape[0])
|
76 |
-
for i, factor in enumerate(downsample_factor):
|
77 |
-
if factor == 0:
|
78 |
-
continue
|
79 |
-
for j in range(probs.shape[-1]):
|
80 |
-
if j % factor == 0:
|
81 |
-
# if we have periodic dropout
|
82 |
-
if periodic_dropout > 0:
|
83 |
-
# flip a coin
|
84 |
-
if torch.bernoulli(torch.tensor(periodic_dropout)).item() == 1:
|
85 |
-
# if we win, skip
|
86 |
-
continue
|
87 |
-
|
88 |
-
# figure out how wide the mask should be
|
89 |
-
j_start = max(0, j - periodic_width // 2)
|
90 |
-
j_end = min(probs.shape[-1] - 1, j + periodic_width // 2) + 1
|
91 |
-
# flip a coin for each position in the mask
|
92 |
-
j_mask = torch.bernoulli(torch.ones(j_end - j_start) * periodic_width_dropout)
|
93 |
-
j_fill = torch.ones_like(j_mask) * (1 - j_mask)
|
94 |
-
# fill
|
95 |
-
probs[i, :, j_start:j_end] = 1 - j_fill
|
96 |
-
if add_random_periodic_offset:
|
97 |
-
# add a random offset to the mask
|
98 |
-
offset = torch.randint(0, downsample_factor[0], (1,))
|
99 |
-
probs = torch.roll(probs, offset.item(), dims=-1)
|
100 |
-
|
101 |
-
mask = torch.bernoulli(probs)
|
102 |
-
mask = mask.round().long()
|
103 |
-
|
104 |
-
# if we have any conditioning codebooks, set their mask to 0
|
105 |
-
n_conditioning_codebooks = n_conditioning_codebooks or self.n_conditioning_codebooks
|
106 |
-
mask[:, :n_conditioning_codebooks, :] = 0
|
107 |
-
else:
|
108 |
-
assert mask.ndim == 3, "mask must be (batch, n_codebooks, seq)"
|
109 |
-
assert mask.shape == x.shape, "mask must be same shape as x"
|
110 |
-
|
111 |
-
if random_x is None:
|
112 |
-
random_x = torch.randint_like(x, 0, self.vocab_size)
|
113 |
-
|
114 |
-
noise_mode = noise_mode if noise_mode is not None else self.noise_mode
|
115 |
-
if noise_mode == "mask":
|
116 |
-
random_x = torch.full_like(x, self.mask_token)
|
117 |
-
elif noise_mode == "random":
|
118 |
-
if random_x is None:
|
119 |
-
random_x = torch.randint_like(x, 0, self.vocab_size)
|
120 |
-
else:
|
121 |
-
raise ValueError(f"invalid noise mode {noise_mode}")
|
122 |
-
|
123 |
-
# add the external mask if we were given one
|
124 |
-
if ext_mask is not None:
|
125 |
-
assert ext_mask.ndim == 3, "mask must be (batch, n_codebooks, seq)"
|
126 |
-
mask = (mask * ext_mask).bool().long()
|
127 |
-
|
128 |
-
x = x * (1 - mask) + random_x * mask
|
129 |
-
return x, mask
|
130 |
-
|
131 |
-
def add_truth_to_logits(
|
132 |
-
self,
|
133 |
-
z_true,
|
134 |
-
z_hat,
|
135 |
-
mask,
|
136 |
-
):
|
137 |
-
if self.noise_mode == "mask":
|
138 |
-
z_true = z_true[:, self.n_conditioning_codebooks :, :]
|
139 |
-
mask = mask[:, self.n_conditioning_codebooks :, :]
|
140 |
-
|
141 |
-
truth = F.one_hot(z_true, self.vocab_size)
|
142 |
-
mask = mask[:, :, :, None].expand(-1, -1, -1, self.vocab_size)
|
143 |
-
z_hat = rearrange(
|
144 |
-
z_hat,
|
145 |
-
"b p (t c) -> b c t p",
|
146 |
-
c=self.n_codebooks - self.n_conditioning_codebooks,
|
147 |
-
)
|
148 |
-
|
149 |
-
z_hat = z_hat * mask + truth * (1 - mask)
|
150 |
-
|
151 |
-
z_hat = rearrange(z_hat, "b c t p -> b p (t c)")
|
152 |
-
else:
|
153 |
-
raise ValueError(f"invalid noise mode for adding truth to logits {self.noise_mode}")
|
154 |
-
|
155 |
-
return z_hat
|
156 |
-
|
157 |
-
def gamma(self, r):
|
158 |
-
return (r * torch.pi / 2).cos()
|
159 |
-
|
160 |
-
def invgamma(self, y):
|
161 |
-
if not torch.is_tensor(y):
|
162 |
-
y = torch.tensor(y)[None]
|
163 |
-
return 2 * y.acos() / torch.pi
|
164 |
-
|
165 |
-
def r_embed(self, r, max_positions=10000):
|
166 |
-
""" """
|
167 |
-
assert hasattr(self, "r_cond_dim"), "must set r_cond_dim before calling r_embed"
|
168 |
-
|
169 |
-
if self.r_cond_dim > 0:
|
170 |
-
dtype = r.dtype
|
171 |
-
|
172 |
-
r = self.gamma(r) * max_positions
|
173 |
-
half_dim = self.r_cond_dim // 2
|
174 |
-
|
175 |
-
emb = math.log(max_positions) / (half_dim - 1)
|
176 |
-
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
177 |
-
|
178 |
-
emb = r[:, None] * emb[None, :]
|
179 |
-
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
180 |
-
|
181 |
-
if self.r_cond_dim % 2 == 1: # zero pad
|
182 |
-
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
183 |
-
|
184 |
-
return emb.to(dtype)
|
185 |
-
else:
|
186 |
-
return r
|
187 |
-
|
188 |
-
@torch.no_grad()
|
189 |
-
def to_signal(self, z, codec):
|
190 |
-
"""
|
191 |
-
convert a sequence of latents to a signal.
|
192 |
-
"""
|
193 |
-
if z.ndim == 2:
|
194 |
-
z = self.embedding.unflatten(z)
|
195 |
-
assert z.ndim == 3
|
196 |
-
|
197 |
-
signal = at.AudioSignal(
|
198 |
-
codec.decode(
|
199 |
-
codec.quantizer.from_latents(self.embedding.from_codes(z, codec))[0]
|
200 |
-
)["audio"],
|
201 |
-
codec.sample_rate,
|
202 |
-
)
|
203 |
-
|
204 |
-
# find where the mask token is and replace it with silence in the audio
|
205 |
-
for tstep in range(z.shape[-1]):
|
206 |
-
if torch.any(z[:, :, tstep] == self.mask_token):
|
207 |
-
sample_idx_0 = tstep * codec.hop_length
|
208 |
-
sample_idx_1 = sample_idx_0 + codec.hop_length
|
209 |
-
signal.samples[:, :, sample_idx_0:sample_idx_1] = 0.0
|
210 |
-
|
211 |
-
return signal
|
212 |
-
|
213 |
-
@torch.no_grad()
|
214 |
-
def sample(
|
215 |
-
self,
|
216 |
-
codec,
|
217 |
-
time_steps: int = 300,
|
218 |
-
sampling_steps: int = 36,
|
219 |
-
start_tokens: Optional[torch.Tensor] = None,
|
220 |
-
mask: Optional[torch.Tensor] = None,
|
221 |
-
temperature: Union[float, Tuple[float, float]] = 0.8,
|
222 |
-
top_k: int = None,
|
223 |
-
sample: str = "gumbel",
|
224 |
-
typical_filtering=True,
|
225 |
-
typical_mass=0.2,
|
226 |
-
typical_min_tokens=1,
|
227 |
-
return_signal=True,
|
228 |
-
):
|
229 |
-
if isinstance(temperature, float):
|
230 |
-
temperature = torch.tensor(temperature).repeat(sampling_steps)
|
231 |
-
elif isinstance(temperature, tuple):
|
232 |
-
assert len(temperature) == 2
|
233 |
-
l, h = temperature
|
234 |
-
temperature = torch.linspace(l, h, sampling_steps)
|
235 |
-
else:
|
236 |
-
raise TypeError(f"invalid type for temperature")
|
237 |
-
|
238 |
-
def flatten(codes):
|
239 |
-
return rearrange(codes, "b c t -> b (t c)")
|
240 |
-
|
241 |
-
def unflatten(codes, c):
|
242 |
-
return rearrange(codes, "b (t c) -> b c t", c=c)
|
243 |
-
|
244 |
-
z = start_tokens
|
245 |
-
|
246 |
-
if z is None:
|
247 |
-
z = torch.full((1, self.n_codebooks, time_steps), self.mask_token).to(
|
248 |
-
self.device
|
249 |
-
)
|
250 |
-
|
251 |
-
if mask is None:
|
252 |
-
mask = torch.ones_like(z).to(self.device).int()
|
253 |
-
mask[:, : self.n_conditioning_codebooks, :] = 0.0
|
254 |
-
if mask.ndim == 2:
|
255 |
-
mask = mask[:, None, :].repeat(1, z.shape[1], 1)
|
256 |
-
|
257 |
-
# figure out which timesteps we're keeping
|
258 |
-
keep_mask = 1 - mask
|
259 |
-
|
260 |
-
# any conditioning codebook levels need to be in the keep mask
|
261 |
-
# if self.n_conditioning_codebooks > 0:
|
262 |
-
# cond_mask = torch.ones(z.shape[0], self.n_conditioning_codebooks, z.shape[-1]).to(z.device)
|
263 |
-
# keep_mask = torch.cat([cond_mask, keep_mask], dim=1)
|
264 |
-
|
265 |
-
# flatten
|
266 |
-
keep_mask = flatten(keep_mask)
|
267 |
-
|
268 |
-
# our r steps
|
269 |
-
r_steps = torch.linspace(0, 1, sampling_steps + 1)[1:].to(self.device)
|
270 |
-
|
271 |
-
# how many tokens did we keep on init?
|
272 |
-
num_kept_on_init = keep_mask.sum()
|
273 |
-
|
274 |
-
# how many codebooks are we inferring vs conditioning on?
|
275 |
-
n_infer_codebooks = self.n_codebooks - self.n_conditioning_codebooks
|
276 |
-
|
277 |
-
for i in range(sampling_steps):
|
278 |
-
# our current temperature
|
279 |
-
tmpt = temperature[i]
|
280 |
-
|
281 |
-
# our current schedule step
|
282 |
-
r = r_steps[i : i + 1]
|
283 |
-
|
284 |
-
with torch.inference_mode():
|
285 |
-
# mask our z
|
286 |
-
keep_mask_unflat = unflatten(keep_mask, c=self.n_codebooks)
|
287 |
-
z_masked = z.masked_fill(~keep_mask_unflat.bool(), self.mask_token)
|
288 |
-
|
289 |
-
# get latents
|
290 |
-
latents = self.embedding.from_codes(z_masked, codec)
|
291 |
-
|
292 |
-
# infer from latents
|
293 |
-
logits = self.forward(latents, r)
|
294 |
-
logits = logits.permute(0, 2, 1) # b, seq, prob
|
295 |
-
|
296 |
-
# the schedule determines how many samples to keep
|
297 |
-
num_tokens_to_infer = (z.shape[-1] * z.shape[-2]) - num_kept_on_init
|
298 |
-
num_to_keep = num_kept_on_init + int(
|
299 |
-
num_tokens_to_infer * (self.gamma(1 - r))
|
300 |
-
)
|
301 |
-
|
302 |
-
# figure out which logits we wanna keep
|
303 |
-
if num_to_keep > 0:
|
304 |
-
probs = logits.softmax(dim=-1)
|
305 |
-
|
306 |
-
# do mod self.vocab_size to make sure we don't sample from the mask token
|
307 |
-
# in case the mask token was in the og z
|
308 |
-
keep_probs = F.one_hot(z%self.vocab_size, self.vocab_size)[:, :, :]
|
309 |
-
|
310 |
-
probs = rearrange(
|
311 |
-
probs, "b (t c) p -> b c t p", c=n_infer_codebooks
|
312 |
-
)
|
313 |
-
probs = torch.cat(
|
314 |
-
[keep_probs[:, : self.n_conditioning_codebooks, ...], probs],
|
315 |
-
dim=1,
|
316 |
-
)
|
317 |
-
|
318 |
-
keep_probs = rearrange(
|
319 |
-
keep_probs, "b c t p -> b (t c) p", c=self.n_codebooks
|
320 |
-
)
|
321 |
-
probs = rearrange(probs, "b c t p -> b (t c) p", c=self.n_codebooks)
|
322 |
-
|
323 |
-
keep_prob_mask = keep_mask.unsqueeze(-1).repeat(
|
324 |
-
1, 1, self.vocab_size
|
325 |
-
)
|
326 |
-
probs = (keep_prob_mask.long() * keep_probs) + (
|
327 |
-
1 - keep_prob_mask.long()
|
328 |
-
) * probs
|
329 |
-
|
330 |
-
highest_probs = probs.max(dim=-1, keepdim=False)[0]
|
331 |
-
v, _ = highest_probs.topk(num_to_keep, dim=-1)
|
332 |
-
|
333 |
-
keep_mask = torch.ones_like(keep_mask).bool().clone()
|
334 |
-
keep_mask[highest_probs < v[..., [-1]]] = 0
|
335 |
-
|
336 |
-
logits = torch.log(probs)
|
337 |
-
|
338 |
-
z_inferred = self.sample_from_logits(
|
339 |
-
logits=logits,
|
340 |
-
top_k=top_k,
|
341 |
-
temperature=tmpt,
|
342 |
-
sample=sample,
|
343 |
-
typical_filtering=typical_filtering,
|
344 |
-
typical_mass=typical_mass,
|
345 |
-
typical_min_tokens=typical_min_tokens,
|
346 |
-
)
|
347 |
-
|
348 |
-
z = rearrange(z_inferred, "b (t c) -> b c t", c=self.n_codebooks)
|
349 |
-
|
350 |
-
# add conditioning codebooks back
|
351 |
-
# z = torch.cat([z[:, :self.n_conditioning_codebooks, :], z_inferred], dim=1)
|
352 |
-
|
353 |
-
if return_signal:
|
354 |
-
return self.to_signal(z, codec)
|
355 |
-
else:
|
356 |
-
return z
|
357 |
-
|
358 |
-
def sample_from_logits(
|
359 |
-
self,
|
360 |
-
logits,
|
361 |
-
top_k: int = None,
|
362 |
-
temperature: float = 1.0,
|
363 |
-
sample: str = "multinomial",
|
364 |
-
typical_filtering=False,
|
365 |
-
typical_mass=0.2,
|
366 |
-
typical_min_tokens=1,
|
367 |
-
):
|
368 |
-
# add temperature
|
369 |
-
logits = logits / temperature
|
370 |
-
|
371 |
-
# add topk
|
372 |
-
if top_k is not None:
|
373 |
-
v, topk_idx = logits.topk(top_k)
|
374 |
-
logits[logits < v[..., [-1]]] = -float("inf")
|
375 |
-
|
376 |
-
if typical_filtering:
|
377 |
-
assert top_k is None
|
378 |
-
nb, nt, _ = logits.shape
|
379 |
-
x_flat = rearrange(logits, "b t l -> (b t ) l")
|
380 |
-
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
|
381 |
-
x_flat_norm_p = torch.exp(x_flat_norm)
|
382 |
-
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
|
383 |
-
|
384 |
-
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
|
385 |
-
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
|
386 |
-
x_flat_cumsum = (
|
387 |
-
x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
|
388 |
-
)
|
389 |
-
|
390 |
-
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
|
391 |
-
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(
|
392 |
-
1, last_ind.view(-1, 1)
|
393 |
-
)
|
394 |
-
if typical_min_tokens > 1:
|
395 |
-
sorted_indices_to_remove[..., :typical_min_tokens] = 0
|
396 |
-
indices_to_remove = sorted_indices_to_remove.scatter(
|
397 |
-
1, x_flat_indices, sorted_indices_to_remove
|
398 |
-
)
|
399 |
-
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
|
400 |
-
logits = rearrange(x_flat, "(b t) l -> b t l", t=nt)
|
401 |
-
|
402 |
-
if sample == "multinomial":
|
403 |
-
probs = torch.softmax(logits, dim=-1)
|
404 |
-
inferred = torch.stack([pr.multinomial(1).squeeze(-1) for pr in probs])
|
405 |
-
elif sample == "argmax":
|
406 |
-
inferred = torch.softmax(logits, dim=-1).argmax(dim=-1)
|
407 |
-
elif sample == "gumbel":
|
408 |
-
inferred = gumbel_sample(logits, dim=-1)
|
409 |
-
else:
|
410 |
-
raise ValueError(f"invalid sampling method: {sample}")
|
411 |
-
|
412 |
-
return inferred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vampnet/modules/layers.py
CHANGED
@@ -162,20 +162,3 @@ class CodebookEmbedding(nn.Module):
|
|
162 |
x = self.out_proj(latents)
|
163 |
return x
|
164 |
|
165 |
-
def flatten(self, tokens: torch.Tensor, n_codebooks: int = None):
|
166 |
-
"""
|
167 |
-
flatten a sequence of tokens from (batch, codebook, time) to (batch, codebook * time)
|
168 |
-
"""
|
169 |
-
n_c = n_codebooks if n_codebooks is not None else self.n_codebooks
|
170 |
-
return rearrange(tokens, "b c t -> b (t c)", c=n_c)
|
171 |
-
|
172 |
-
def unflatten(self, flat_tokens: torch.Tensor, n_codebooks: int = None):
|
173 |
-
"""
|
174 |
-
unflatten a sequence of tokens from (batch, codebook * time) to (batch, codebook, time)
|
175 |
-
"""
|
176 |
-
nb, nt = flat_tokens.shape
|
177 |
-
|
178 |
-
n_c = n_codebooks if n_codebooks is not None else self.n_codebooks
|
179 |
-
tokens = rearrange(flat_tokens, "b (t c) -> b c t", c=n_c)
|
180 |
-
|
181 |
-
return tokens
|
|
|
162 |
x = self.out_proj(latents)
|
163 |
return x
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vampnet/modules/transformer.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import math
|
|
|
2 |
|
3 |
import numpy as np
|
4 |
import torch
|
@@ -6,16 +7,30 @@ import torch.nn as nn
|
|
6 |
import torch.nn.functional as F
|
7 |
from einops import rearrange
|
8 |
import loralib as lora
|
|
|
9 |
|
10 |
-
from .base import VampBase
|
11 |
from .activations import get_activation
|
12 |
from .layers import CodebookEmbedding
|
13 |
from .layers import FiLM
|
14 |
from .layers import SequentialWithFiLM
|
15 |
from .layers import WNConv1d
|
|
|
|
|
16 |
|
17 |
LORA_R = 8
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class RMSNorm(nn.Module):
|
21 |
def __init__(self, hidden_size: int, eps=1e-6):
|
@@ -435,7 +450,7 @@ class TransformerStack(nn.Module):
|
|
435 |
return self.norm(x) if self.norm is not None else x
|
436 |
|
437 |
|
438 |
-
class VampNet(
|
439 |
def __init__(
|
440 |
self,
|
441 |
n_heads: int = 20,
|
@@ -519,6 +534,270 @@ class VampNet(VampBase):
|
|
519 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
520 |
|
521 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
|
524 |
if __name__ == "__main__":
|
@@ -538,8 +817,7 @@ if __name__ == "__main__":
|
|
538 |
).to(device)
|
539 |
|
540 |
r = torch.zeros(batch_size).to(device)
|
541 |
-
|
542 |
-
|
543 |
z_mask_latent = torch.rand(
|
544 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
545 |
).to(device)
|
|
|
1 |
import math
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
|
4 |
import numpy as np
|
5 |
import torch
|
|
|
7 |
import torch.nn.functional as F
|
8 |
from einops import rearrange
|
9 |
import loralib as lora
|
10 |
+
import audiotools as at
|
11 |
|
|
|
12 |
from .activations import get_activation
|
13 |
from .layers import CodebookEmbedding
|
14 |
from .layers import FiLM
|
15 |
from .layers import SequentialWithFiLM
|
16 |
from .layers import WNConv1d
|
17 |
+
from ..util import scalar_to_batch_tensor, codebook_flatten, codebook_unflatten
|
18 |
+
from ..mask import _gamma
|
19 |
|
20 |
LORA_R = 8
|
21 |
|
22 |
+
def log(t, eps=1e-20):
|
23 |
+
return torch.log(t + eps)
|
24 |
+
|
25 |
+
|
26 |
+
def gumbel_noise(t):
|
27 |
+
noise = torch.zeros_like(t).uniform_(0, 1)
|
28 |
+
return -log(-log(noise))
|
29 |
+
|
30 |
+
|
31 |
+
def gumbel_sample(t, temperature=1.0, dim=-1):
|
32 |
+
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
|
33 |
+
|
34 |
|
35 |
class RMSNorm(nn.Module):
|
36 |
def __init__(self, hidden_size: int, eps=1e-6):
|
|
|
450 |
return self.norm(x) if self.norm is not None else x
|
451 |
|
452 |
|
453 |
+
class VampNet(at.ml.BaseModel):
|
454 |
def __init__(
|
455 |
self,
|
456 |
n_heads: int = 20,
|
|
|
534 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
535 |
|
536 |
return out
|
537 |
+
|
538 |
+
def r_embed(self, r, max_positions=10000):
|
539 |
+
if self.r_cond_dim > 0:
|
540 |
+
dtype = r.dtype
|
541 |
+
|
542 |
+
r = _gamma(r) * max_positions
|
543 |
+
half_dim = self.r_cond_dim // 2
|
544 |
+
|
545 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
546 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
547 |
+
|
548 |
+
emb = r[:, None] * emb[None, :]
|
549 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
550 |
+
|
551 |
+
if self.r_cond_dim % 2 == 1: # zero pad
|
552 |
+
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
553 |
+
|
554 |
+
return emb.to(dtype)
|
555 |
+
else:
|
556 |
+
return r
|
557 |
+
|
558 |
+
@torch.no_grad()
|
559 |
+
def to_signal(self, z, codec):
|
560 |
+
"""
|
561 |
+
convert a sequence of latents to a signal.
|
562 |
+
"""
|
563 |
+
assert z.ndim == 3
|
564 |
+
|
565 |
+
signal = at.AudioSignal(
|
566 |
+
codec.decode(
|
567 |
+
codec.quantizer.from_latents(self.embedding.from_codes(z, codec))[0]
|
568 |
+
)["audio"],
|
569 |
+
codec.sample_rate,
|
570 |
+
)
|
571 |
+
|
572 |
+
# find where the mask token is and replace it with silence in the audio
|
573 |
+
for tstep in range(z.shape[-1]):
|
574 |
+
if torch.any(z[:, :, tstep] == self.mask_token):
|
575 |
+
sample_idx_0 = tstep * codec.hop_length
|
576 |
+
sample_idx_1 = sample_idx_0 + codec.hop_length
|
577 |
+
signal.samples[:, :, sample_idx_0:sample_idx_1] = 0.0
|
578 |
+
|
579 |
+
return signal
|
580 |
+
|
581 |
+
def add_truth_to_logits(
|
582 |
+
self,
|
583 |
+
z_true,
|
584 |
+
z_hat,
|
585 |
+
mask,
|
586 |
+
):
|
587 |
+
if self.noise_mode == "mask":
|
588 |
+
z_true = z_true[:, self.n_conditioning_codebooks :, :]
|
589 |
+
mask = mask[:, self.n_conditioning_codebooks :, :]
|
590 |
+
|
591 |
+
truth = F.one_hot(z_true, self.vocab_size)
|
592 |
+
mask = mask[:, :, :, None].expand(-1, -1, -1, self.vocab_size)
|
593 |
+
z_hat = rearrange(
|
594 |
+
z_hat,
|
595 |
+
"b p (t c) -> b c t p",
|
596 |
+
c=self.n_codebooks - self.n_conditioning_codebooks,
|
597 |
+
)
|
598 |
+
|
599 |
+
z_hat = z_hat * mask + truth * (1 - mask)
|
600 |
+
|
601 |
+
z_hat = rearrange(z_hat, "b c t p -> b p (t c)")
|
602 |
+
else:
|
603 |
+
raise ValueError(f"invalid noise mode for adding truth to logits {self.noise_mode}")
|
604 |
+
|
605 |
+
return z_hat
|
606 |
+
|
607 |
+
|
608 |
+
@torch.no_grad()
|
609 |
+
def sample(
|
610 |
+
self,
|
611 |
+
codec,
|
612 |
+
time_steps: int = 300,
|
613 |
+
sampling_steps: int = 36,
|
614 |
+
start_tokens: Optional[torch.Tensor] = None,
|
615 |
+
mask: Optional[torch.Tensor] = None,
|
616 |
+
temperature: Union[float, Tuple[float, float]] = 0.8,
|
617 |
+
top_k: int = None,
|
618 |
+
sample: str = "gumbel",
|
619 |
+
typical_filtering=True,
|
620 |
+
typical_mass=0.2,
|
621 |
+
typical_min_tokens=1,
|
622 |
+
return_signal=True,
|
623 |
+
):
|
624 |
+
if isinstance(temperature, float):
|
625 |
+
temperature = torch.tensor(temperature).repeat(sampling_steps)
|
626 |
+
elif isinstance(temperature, tuple):
|
627 |
+
assert len(temperature) == 2
|
628 |
+
l, h = temperature
|
629 |
+
temperature = torch.linspace(l, h, sampling_steps)
|
630 |
+
else:
|
631 |
+
raise TypeError(f"invalid type for temperature")
|
632 |
+
|
633 |
+
z = start_tokens
|
634 |
+
|
635 |
+
if z is None:
|
636 |
+
z = torch.full((1, self.n_codebooks, time_steps), self.mask_token).to(
|
637 |
+
self.device
|
638 |
+
)
|
639 |
+
|
640 |
+
if mask is None:
|
641 |
+
mask = torch.ones_like(z).to(self.device).int()
|
642 |
+
mask[:, : self.n_conditioning_codebooks, :] = 0.0
|
643 |
+
if mask.ndim == 2:
|
644 |
+
mask = mask[:, None, :].repeat(1, z.shape[1], 1)
|
645 |
+
|
646 |
+
# figure out which timesteps we're keeping
|
647 |
+
keep_mask = 1 - mask
|
648 |
+
|
649 |
+
# any conditioning codebook levels need to be in the keep mask
|
650 |
+
# if self.n_conditioning_codebooks > 0:
|
651 |
+
# cond_mask = torch.ones(z.shape[0], self.n_conditioning_codebooks, z.shape[-1]).to(z.device)
|
652 |
+
# keep_mask = torch.cat([cond_mask, keep_mask], dim=1)
|
653 |
+
|
654 |
+
# flatten
|
655 |
+
keep_mask = codebook_flatten(keep_mask)
|
656 |
+
|
657 |
+
# our r steps
|
658 |
+
r_steps = torch.linspace(0, 1, sampling_steps + 1)[1:].to(self.device)
|
659 |
+
|
660 |
+
# how many tokens did we keep on init?
|
661 |
+
num_kept_on_init = keep_mask.sum()
|
662 |
+
|
663 |
+
# how many codebooks are we inferring vs conditioning on?
|
664 |
+
n_infer_codebooks = self.n_codebooks - self.n_conditioning_codebooks
|
665 |
+
|
666 |
+
for i in range(sampling_steps):
|
667 |
+
# our current temperature
|
668 |
+
tmpt = temperature[i]
|
669 |
+
|
670 |
+
# our current schedule step
|
671 |
+
r = r_steps[i : i + 1]
|
672 |
+
|
673 |
+
with torch.inference_mode():
|
674 |
+
# mask our z
|
675 |
+
keep_mask_unflat = codebook_unflatten(keep_mask, n_c=self.n_codebooks)
|
676 |
+
z_masked = z.masked_fill(~keep_mask_unflat.bool(), self.mask_token)
|
677 |
+
|
678 |
+
# get latents
|
679 |
+
latents = self.embedding.from_codes(z_masked, codec)
|
680 |
+
|
681 |
+
# infer from latents
|
682 |
+
logits = self.forward(latents, r)
|
683 |
+
logits = logits.permute(0, 2, 1) # b, seq, prob
|
684 |
+
|
685 |
+
# the schedule determines how many samples to keep
|
686 |
+
num_tokens_to_infer = (z.shape[-1] * z.shape[-2]) - num_kept_on_init
|
687 |
+
num_to_keep = num_kept_on_init + int(
|
688 |
+
num_tokens_to_infer * (_gamma(1 - r))
|
689 |
+
)
|
690 |
+
|
691 |
+
# figure out which logits we wanna keep
|
692 |
+
if num_to_keep > 0:
|
693 |
+
probs = logits.softmax(dim=-1)
|
694 |
+
|
695 |
+
# do mod self.vocab_size to make sure we don't sample from the mask token
|
696 |
+
# in case the mask token was in the og z
|
697 |
+
keep_probs = F.one_hot(z%self.vocab_size, self.vocab_size)[:, :, :]
|
698 |
+
|
699 |
+
probs = rearrange(
|
700 |
+
probs, "b (t c) p -> b c t p", c=n_infer_codebooks
|
701 |
+
)
|
702 |
+
probs = torch.cat(
|
703 |
+
[keep_probs[:, : self.n_conditioning_codebooks, ...], probs],
|
704 |
+
dim=1,
|
705 |
+
)
|
706 |
+
|
707 |
+
keep_probs = rearrange(
|
708 |
+
keep_probs, "b c t p -> b (t c) p", c=self.n_codebooks
|
709 |
+
)
|
710 |
+
probs = rearrange(probs, "b c t p -> b (t c) p", c=self.n_codebooks)
|
711 |
+
|
712 |
+
keep_prob_mask = keep_mask.unsqueeze(-1).repeat(
|
713 |
+
1, 1, self.vocab_size
|
714 |
+
)
|
715 |
+
probs = (keep_prob_mask.long() * keep_probs) + (
|
716 |
+
1 - keep_prob_mask.long()
|
717 |
+
) * probs
|
718 |
+
|
719 |
+
highest_probs = probs.max(dim=-1, keepdim=False)[0]
|
720 |
+
v, _ = highest_probs.topk(num_to_keep, dim=-1)
|
721 |
+
|
722 |
+
keep_mask = torch.ones_like(keep_mask).bool().clone()
|
723 |
+
keep_mask[highest_probs < v[..., [-1]]] = 0
|
724 |
+
|
725 |
+
logits = torch.log(probs)
|
726 |
+
|
727 |
+
z_inferred = self.sample_from_logits(
|
728 |
+
logits=logits,
|
729 |
+
top_k=top_k,
|
730 |
+
temperature=tmpt,
|
731 |
+
sample=sample,
|
732 |
+
typical_filtering=typical_filtering,
|
733 |
+
typical_mass=typical_mass,
|
734 |
+
typical_min_tokens=typical_min_tokens,
|
735 |
+
)
|
736 |
+
|
737 |
+
z = codebook_unflatten(z_inferred, n_c=self.n_codebooks)
|
738 |
+
|
739 |
+
|
740 |
+
if return_signal:
|
741 |
+
return self.to_signal(z, codec)
|
742 |
+
else:
|
743 |
+
return z
|
744 |
+
|
745 |
+
def sample_from_logits(
|
746 |
+
self,
|
747 |
+
logits,
|
748 |
+
top_k: int = None,
|
749 |
+
temperature: float = 1.0,
|
750 |
+
sample: str = "multinomial",
|
751 |
+
typical_filtering=False,
|
752 |
+
typical_mass=0.2,
|
753 |
+
typical_min_tokens=1,
|
754 |
+
):
|
755 |
+
# add temperature
|
756 |
+
logits = logits / temperature
|
757 |
+
|
758 |
+
# add topk
|
759 |
+
if top_k is not None:
|
760 |
+
v, topk_idx = logits.topk(top_k)
|
761 |
+
logits[logits < v[..., [-1]]] = -float("inf")
|
762 |
+
|
763 |
+
if typical_filtering:
|
764 |
+
assert top_k is None
|
765 |
+
nb, nt, _ = logits.shape
|
766 |
+
x_flat = rearrange(logits, "b t l -> (b t ) l")
|
767 |
+
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
|
768 |
+
x_flat_norm_p = torch.exp(x_flat_norm)
|
769 |
+
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
|
770 |
+
|
771 |
+
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
|
772 |
+
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
|
773 |
+
x_flat_cumsum = (
|
774 |
+
x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
|
775 |
+
)
|
776 |
+
|
777 |
+
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
|
778 |
+
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(
|
779 |
+
1, last_ind.view(-1, 1)
|
780 |
+
)
|
781 |
+
if typical_min_tokens > 1:
|
782 |
+
sorted_indices_to_remove[..., :typical_min_tokens] = 0
|
783 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
784 |
+
1, x_flat_indices, sorted_indices_to_remove
|
785 |
+
)
|
786 |
+
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
|
787 |
+
logits = rearrange(x_flat, "(b t) l -> b t l", t=nt)
|
788 |
+
|
789 |
+
if sample == "multinomial":
|
790 |
+
probs = torch.softmax(logits, dim=-1)
|
791 |
+
inferred = torch.stack([pr.multinomial(1).squeeze(-1) for pr in probs])
|
792 |
+
elif sample == "argmax":
|
793 |
+
inferred = torch.softmax(logits, dim=-1).argmax(dim=-1)
|
794 |
+
elif sample == "gumbel":
|
795 |
+
inferred = gumbel_sample(logits, dim=-1)
|
796 |
+
else:
|
797 |
+
raise ValueError(f"invalid sampling method: {sample}")
|
798 |
+
|
799 |
+
return inferred
|
800 |
+
|
801 |
|
802 |
|
803 |
if __name__ == "__main__":
|
|
|
817 |
).to(device)
|
818 |
|
819 |
r = torch.zeros(batch_size).to(device)
|
820 |
+
|
|
|
821 |
z_mask_latent = torch.rand(
|
822 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
823 |
).to(device)
|
vampnet/signal.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from typing import Optional, Tuple
|
3 |
-
|
4 |
-
from .util import scalar_to_batch_tensor
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
vampnet/util.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import tqdm
|
2 |
|
3 |
import torch
|
|
|
4 |
|
5 |
def scalar_to_batch_tensor(x, batch_size):
|
6 |
return torch.tensor(x).repeat(batch_size)
|
@@ -29,4 +30,17 @@ def parallelize(
|
|
29 |
elif parallel == "single":
|
30 |
return [fn(x) for x in tqdm.tqdm(*iterables)]
|
31 |
else:
|
32 |
-
raise ValueError(f"parallel must be one of 'thread_map', 'process_map', 'single', but got {parallel}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import tqdm
|
2 |
|
3 |
import torch
|
4 |
+
from einops import rearrange
|
5 |
|
6 |
def scalar_to_batch_tensor(x, batch_size):
|
7 |
return torch.tensor(x).repeat(batch_size)
|
|
|
30 |
elif parallel == "single":
|
31 |
return [fn(x) for x in tqdm.tqdm(*iterables)]
|
32 |
else:
|
33 |
+
raise ValueError(f"parallel must be one of 'thread_map', 'process_map', 'single', but got {parallel}")
|
34 |
+
|
35 |
+
def codebook_flatten(tokens: torch.Tensor):
|
36 |
+
"""
|
37 |
+
flatten a sequence of tokens from (batch, codebook, time) to (batch, codebook * time)
|
38 |
+
"""
|
39 |
+
return rearrange(tokens, "b c t -> b (t c)")
|
40 |
+
|
41 |
+
def codebook_unflatten(flat_tokens: torch.Tensor, n_c: int = None):
|
42 |
+
"""
|
43 |
+
unflatten a sequence of tokens from (batch, codebook * time) to (batch, codebook, time)
|
44 |
+
"""
|
45 |
+
tokens = rearrange(flat_tokens, "b (t c) -> b c t", c=n_c)
|
46 |
+
return tokens
|