Spaces:
Sleeping
Sleeping
File size: 2,948 Bytes
99122c4 50f034f df7025d 50f034f 3277bd0 99122c4 50f034f 238e0c7 c039932 04f1577 82c5a36 50f034f 9da46f9 50f034f e3ca5f7 99122c4 50f034f 6fcf6a4 e251e23 09e4bee e251e23 6fcf6a4 99122c4 50f034f 74cced7 50f034f 74cced7 3efca14 6fcf6a4 74cced7 50f034f 99122c4 50f034f 74cced7 50f034f 99122c4 50f034f 74cced7 9da46f9 99122c4 75a7169 9da46f9 75a7169 50f034f 75a7169 50f034f 99122c4 75a7169 a876330 75a7169 e3ca5f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
# VampNet
This repository contains recipes for training generative music models on top of the Descript Audio Codec.
## try `unloop`
you can try vampnet in a co-creative looper called unloop. see this link: https://github.com/hugofloresgarcia/unloop
# Setting up
**Requires Python 3.9**.
you'll need a Python 3.9 environment to run VampNet. This is due to a [known issue with madmom](https://github.com/hugofloresgarcia/vampnet/issues/15).
(for example, using conda)
```bash
conda create -n vampnet python=3.9
conda activate vampnet
```
install VampNet
```bash
git clone https://github.com/hugofloresgarcia/vampnet.git
pip install -e ./vampnet
```
## A note on argbind
This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
Config files are stored in the `conf/` folder.
## Getting the Pretrained Models
### Licensing for Pretrained Models:
The weights for the models are licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml). Likewise, any VampNet models fine-tuned on the pretrained models are also licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml).
Download the pretrained models from [this link](https://zenodo.org/record/8136629). Then, extract the models to the `models/` folder.
# Usage
## Launching the Gradio Interface
You can launch a gradio UI to play with vampnet.
```bash
python app.py --args.load conf/interface.yml --Interface.device cuda
```
# Training / Fine-tuning
## Training a model
To train a model, run the following script:
```bash
python scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints
```
You can edit `conf/vampnet.yml` to change the dataset paths or any training hyperparameters.
For coarse2fine models, you can use `conf/c2f.yml` as a starting configuration.
See `python scripts/exp/train.py -h` for a list of options.
## Fine-tuning
To fine-tune a model, use the script in `scripts/exp/fine_tune.py` to generate 3 configuration files: `c2f.yml`, `coarse.yml`, and `interface.yml`.
The first two are used to fine-tune the coarse and fine models, respectively. The last one is used to launch the gradio interface.
```bash
python scripts/exp/fine_tune.py "/path/to/audio1.mp3 /path/to/audio2/ /path/to/audio3.wav" <fine_tune_name>
```
This will create a folder under `conf/<fine_tune_name>/` with the 3 configuration files.
The save_paths will be set to `runs/<fine_tune_name>/coarse` and `runs/<fine_tune_name>/c2f`.
launch the coarse job:
```bash
python scripts/exp/train.py --args.load conf/<fine_tune_name>/coarse.yml
```
this will save the coarse model to `runs/<fine_tune_name>/coarse/ckpt/best/`.
launch the c2f job:
```bash
python scripts/exp/train.py --args.load conf/<fine_tune_name>/c2f.yml
```
launch the interface:
```bash
python app.py --args.load conf/generated/<fine_tune_name>/interface.yml
```
|