File size: 14,384 Bytes
ac059f4
 
 
f3f4634
 
e3ca5f7
ac059f4
 
 
 
 
 
 
e3ca5f7
ac059f4
 
 
f3f4634
 
 
ac059f4
 
 
f3f4634
ac059f4
 
 
 
 
 
 
 
 
 
3f6f517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09b9691
 
 
 
 
 
 
 
 
 
 
 
 
3f6f517
 
 
 
f3f4634
 
 
 
ac059f4
 
 
 
 
 
 
 
 
f3f4634
 
 
 
ac059f4
99122c4
ac059f4
 
 
 
 
f3f4634
 
 
 
ac059f4
 
881d56d
3f6f517
 
 
 
 
 
 
 
 
 
 
c940f25
 
e3ca5f7
c940f25
 
e3ca5f7
881d56d
 
e3ca5f7
 
 
 
 
 
 
 
 
 
 
 
fa490b8
e3ca5f7
 
 
 
 
 
 
 
881d56d
 
 
 
 
e3ca5f7
 
 
09b9691
c940f25
 
e3ca5f7
 
 
 
 
09b9691
b61e699
 
 
 
09b9691
e3ca5f7
 
 
09b9691
e3ca5f7
fa490b8
 
 
c940f25
fa490b8
e3ca5f7
881d56d
 
 
 
 
 
 
 
 
 
 
 
 
3815be3
e3ca5f7
f3f4634
 
ac059f4
c940f25
 
f3f4634
 
 
 
c940f25
09b9691
e3ca5f7
 
 
 
 
 
 
 
 
 
f3f4634
 
 
 
c940f25
f3f4634
 
 
 
 
 
 
 
ac059f4
f3f4634
 
e3ca5f7
f3f4634
 
 
fa490b8
 
 
 
ac059f4
 
 
 
 
 
 
 
 
 
128981d
ac059f4
f3f4634
 
 
 
128981d
ac059f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f4634
881d56d
 
3f6f517
 
881d56d
 
 
 
e3ca5f7
 
 
 
 
5a343f4
 
e3ca5f7
 
f3f4634
e3ca5f7
f3f4634
3f6f517
f3f4634
e3ca5f7
 
322cc3a
e3ca5f7
322cc3a
 
 
f3f4634
881d56d
 
 
 
 
3f6f517
881d56d
 
e3ca5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f4634
03f09ee
 
 
 
 
 
 
 
 
 
 
 
 
f3f4634
09b9691
 
 
 
 
 
ac059f4
b61e699
 
09b9691
b61e699
 
 
 
 
 
09b9691
b61e699
 
 
 
 
 
09b9691
b61e699
 
f3f4634
 
322cc3a
f3f4634
ac059f4
03f09ee
ac059f4
f3f4634
e3ca5f7
 
 
 
 
 
 
 
f3f4634
b61e699
 
3f6f517
 
 
 
 
75a7169
f3f4634
 
ac059f4
128981d
ac059f4
f3f4634
03f09ee
 
 
 
 
 
 
 
 
 
75a7169
03f09ee
 
881d56d
 
 
e3ca5f7
 
09b9691
e3ca5f7
 
 
 
 
 
881d56d
 
b61e699
 
 
 
3f6f517
881d56d
 
 
 
 
 
fa490b8
881d56d
 
 
 
 
 
 
fa490b8
ac059f4
 
c940f25
 
 
 
 
 
f3f4634
 
c940f25
f3f4634
 
ac059f4
3f6f517
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from pathlib import Path
from typing import Tuple
import yaml
import tempfile
import uuid
from dataclasses import dataclass, asdict

import numpy as np
import audiotools as at
import argbind

import gradio as gr
from vampnet.interface import Interface
from vampnet import mask as pmask

Interface = argbind.bind(Interface)
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)

conf = argbind.parse_args()

with argbind.scope(conf):
    interface = Interface()
    loader = AudioLoader()
    print(f"interface device is {interface.device}")

dataset = at.data.datasets.AudioDataset(
    loader,
    sample_rate=interface.codec.sample_rate,
    duration=interface.coarse.chunk_size_s,
    n_examples=5000,
    without_replacement=True,
)


checkpoints = {
    "spotdl": {
        "coarse": "./models/spotdl/coarse.pth",
        "c2f": "./models/spotdl/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": True
    }, 
    "berta": {
        "coarse": "./models/finetuned/berta-goldman-speech/coarse.pth",
        "c2f": "./models/finetuned/berta-goldman-speech/c2f.pth",
        "codec": "./model/spotdl/codec.pth",
        "full_ckpt": True
    }, 
    "xeno-canto-2": {
        "coarse": "./models/finetuned/xeno-canto-2/coarse.pth",
        "c2f": "./models/finetuned/xeno-canto-2/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": True
    }, 
    "panchos": {
        "coarse": "./models/finetuned/panchos/coarse.pth",
        "c2f": "./models/finetuned/panchos/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": False
    },
    "tv-choir": {
        "coarse": "./models/finetuned/tv-choir/coarse.pth",
        "c2f": "./models/finetuned/tv-choir/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": False
    }, 
    "titi": {
        "coarse": "./models/finetuned/titi/coarse.pth",
        "c2f": "./models/finetuned/titi/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": False
    }, 
    "titi-clean": {
        "coarse": "./models/finetuned/titi-clean/coarse.pth",
        "c2f": "./models/finetuned/titi-clean/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": False
    }, 
    "breaks-steps": {
        "coarse": "./models/finetuned/breaks-steps/coarse.pth",
        "c2f": None, #"./models/finetuned/breaks-steps/c2f.pth",
        "codec": "./models/spotdl/codec.pth",
        "full_ckpt": False
    },
}
interface.checkpoint_key = "spotdl"


OUT_DIR = Path("gradio-outputs")
OUT_DIR.mkdir(exist_ok=True, parents=True)


def load_audio(file):
    print(file)
    filepath = file.name
    sig = at.AudioSignal.salient_excerpt(
        filepath, 
        duration=interface.coarse.chunk_size_s
    )
    sig = interface.preprocess(sig)

    out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
    out_dir.mkdir(parents=True, exist_ok=True)
    sig.write(out_dir / "input.wav")
    return sig.path_to_file


def load_random_audio():
    index = np.random.randint(0, len(dataset))
    sig = dataset[index]["signal"]
    sig = interface.preprocess(sig)

    out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
    out_dir.mkdir(parents=True, exist_ok=True)
    sig.write(out_dir / "input.wav")
    return sig.path_to_file


def _vamp(data, return_mask=False):

    # if our checkpoint key is different, we need to load a new checkpoint
    if data[checkpoint_key] != interface.checkpoint_key:
        print(f"loading checkpoint {data[checkpoint_key]}")
        interface.lora_load(
            checkpoints[data[checkpoint_key]]["coarse"],
            checkpoints[data[checkpoint_key]]["c2f"],
            checkpoints[data[checkpoint_key]]["full_ckpt"],
        )
        interface.checkpoint_key = data[checkpoint_key]

    out_dir = OUT_DIR / str(uuid.uuid4())
    out_dir.mkdir()
    sig = at.AudioSignal(data[input_audio])
    #pitch shift input
    sig = sig.shift_pitch(data[input_pitch_shift])

    # TODO: random pitch shift of segments in the signal to prompt! window size should be a parameter, pitch shift width should be a parameter

    z = interface.encode(sig)

    ncc = data[n_conditioning_codebooks]

    # build the mask
    mask = pmask.linear_random(z, data[rand_mask_intensity])
    mask = pmask.mask_and(
        mask, pmask.inpaint(
            z,
            interface.s2t(data[prefix_s]),
            interface.s2t(data[suffix_s])
        )
    )
    mask = pmask.mask_and(
        mask, pmask.periodic_mask(
            z,
            data[periodic_p],
            data[periodic_w],
            random_roll=True
        )
    )
    if data[onset_mask_width] > 0:
        mask = pmask.mask_or(
            mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
        )
    # these should be the last two mask ops
    mask = pmask.dropout(mask, data[dropout])
    mask = pmask.codebook_unmask(mask, ncc)

    print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[temp]},  use coarse2fine {data[use_coarse2fine]}")
    # save the mask as a txt file
    np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())

    zv, mask_z = interface.coarse_vamp(
        z, 
        mask=mask,
        sampling_steps=data[num_steps],
        temperature=data[temp]*10,
        return_mask=True, 
        typical_filtering=data[typical_filtering], 
        typical_mass=data[typical_mass], 
        typical_min_tokens=data[typical_min_tokens], 
        gen_fn=interface.coarse.generate,
    )

    if use_coarse2fine: 
        zv = interface.coarse_to_fine(zv, temperature=data[temp])

    sig = interface.to_signal(zv).cpu()
    print("done")

    

    sig.write(out_dir / "output.wav")

    if return_mask:
        mask = interface.to_signal(mask_z).cpu()
        mask.write(out_dir / "mask.wav")
        return sig.path_to_file, mask.path_to_file
    else:
        return sig.path_to_file

def vamp(data):
    return _vamp(data, return_mask=True)

def api_vamp(data):
    return _vamp(data, return_mask=False)
        
def save_vamp(data):
    out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
    out_dir.mkdir(parents=True, exist_ok=True)

    sig_in = at.AudioSignal(data[input_audio])
    sig_out = at.AudioSignal(data[output_audio])

    sig_in.write(out_dir / "input.wav")
    sig_out.write(out_dir / "output.wav")
    
    _data = {
        "temp": data[temp],
        "prefix_s": data[prefix_s],
        "suffix_s": data[suffix_s],
        "rand_mask_intensity": data[rand_mask_intensity],
        "num_steps": data[num_steps],
        "notes": data[notes_text],
        "periodic_period": data[periodic_p],
        "periodic_width": data[periodic_w],
        "n_conditioning_codebooks": data[n_conditioning_codebooks], 
        "use_coarse2fine": data[use_coarse2fine],
        "stretch_factor": data[stretch_factor],
    }

    # save with yaml
    with open(out_dir / "data.yaml", "w") as f:
        yaml.dump(_data, f)

    import zipfile
    zip_path = out_dir.with_suffix(".zip")
    with zipfile.ZipFile(zip_path, "w") as zf:
        for file in out_dir.iterdir():
            zf.write(file, file.name)

    return f"saved! your save code is {out_dir.stem}", zip_path



with gr.Blocks() as demo:

    with gr.Row():
        with gr.Column():
            use_coarse2fine = gr.Checkbox(
                label="use coarse2fine",
                value=True
            )

            manual_audio_upload = gr.File(
                label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
                file_types=["audio"]
            )
            load_random_audio_button = gr.Button("or load random audio")

            input_audio = gr.Audio(
                label="input audio",
                interactive=False, 
                type="filepath",
            )

            audio_mask = gr.Audio(
                label="audio mask (listen to this to hear the mask hints)",
                interactive=False, 
                type="filepath",
            )

            # connect widgets
            load_random_audio_button.click(
                fn=load_random_audio,
                inputs=[],
                outputs=[ input_audio]
            )

            manual_audio_upload.change(
                fn=load_audio,
                inputs=[manual_audio_upload],
                outputs=[ input_audio]
            )
                
        # mask settings
        with gr.Column():

            input_pitch_shift = gr.Slider(
                label="input pitch shift (semitones)",
                minimum=-36,
                maximum=36,
                step=1,
                value=0,
            )

            rand_mask_intensity = gr.Slider(
                label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
                minimum=0.0,
                maximum=1.0,
                value=1.0
            )

            periodic_p = gr.Slider(
                label="periodic prompt  (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
                minimum=0,
                maximum=128, 
                step=1,
                value=3, 
            )
            periodic_w = gr.Slider(
                label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
                minimum=1,
                maximum=20,
                step=1,
                value=1,
            )

            onset_mask_width = gr.Slider(
                label="onset mask width (steps, 1 step ~= 10milliseconds)",
                minimum=0,
                maximum=20,
                step=1,
                value=5,
            )

            with gr.Accordion("extras ", open=False):
                n_conditioning_codebooks = gr.Number(
                    label="number of conditioning codebooks. probably 0", 
                    value=0,
                    precision=0,
                )

                stretch_factor = gr.Slider(
                    label="time stretch factor",
                    minimum=0,
                    maximum=64, 
                    step=1,
                    value=1, 
                )


            with gr.Accordion("prefix/suffix hints", open=False):
                prefix_s = gr.Slider(
                    label="prefix hint length (seconds)",
                    minimum=0.0,
                    maximum=10.0,
                    value=0.0
                )
                suffix_s = gr.Slider(
                    label="suffix hint length (seconds)",
                    minimum=0.0,
                    maximum=10.0,
                    value=0.0
                )

            temp = gr.Slider(
                label="temperature",
                minimum=0.0,
                maximum=1.5,
                value=0.8
            )

            with gr.Accordion("sampling settings", open=False):
                typical_filtering = gr.Checkbox(
                    label="typical filtering ",
                    value=True
                )
                typical_mass = gr.Slider(
                    label="typical mass (should probably stay between 0.1 and 0.5)",
                    minimum=0.01,
                    maximum=0.99,
                    value=0.15
                )
                typical_min_tokens = gr.Slider(
                    label="typical min tokens (should probably stay between 1 and 256)",
                    minimum=1,
                    maximum=256,
                    step=1,
                    value=64
                )

            num_steps = gr.Slider(
                label="number of steps (should normally be between 12 and 36)",
                minimum=1,
                maximum=128,
                step=1,
                value=36
            )

            dropout = gr.Slider(
                label="mask dropout",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.0
            )


        # mask settings
        with gr.Column():
            checkpoint_key = gr.Radio(
                label="checkpoint",
                choices=list(checkpoints.keys()),
                value="spotdl" 
            )
            vamp_button = gr.Button("vamp!!!")
            output_audio = gr.Audio(
                label="output audio",
                interactive=False,
                type="filepath"
            )

            notes_text = gr.Textbox(
                label="type any notes about the generated audio here", 
                value="",
                interactive=True
            )
            save_button = gr.Button("save vamp")
            download_file = gr.File(
                label="vamp to download will appear here",
                interactive=False
            )
            use_as_input_button = gr.Button("use output as input")
            
            thank_you = gr.Markdown("")


    _inputs = {
            input_audio, 
            num_steps,
            temp,
            prefix_s, suffix_s, 
            rand_mask_intensity, 
            periodic_p, periodic_w,
            n_conditioning_codebooks, 
            dropout,
            use_coarse2fine, 
            stretch_factor, 
            onset_mask_width, 
            input_pitch_shift, 
            typical_filtering,
            typical_mass,
            typical_min_tokens,
            checkpoint_key
        }
  
    # connect widgets
    vamp_button.click(
        fn=vamp,
        inputs=_inputs,
        outputs=[output_audio, audio_mask], 
    )

    api_vamp_button = gr.Button("api vamp")
    api_vamp_button.click(
        fn=api_vamp,
        inputs=_inputs, 
        outputs=[output_audio], 
        api_name="vamp"
    )

    use_as_input_button.click(
        fn=lambda x: x,
        inputs=[output_audio],
        outputs=[input_audio]
    )

    save_button.click(
        fn=save_vamp,
        inputs=_inputs | {notes_text, output_audio},
        outputs=[thank_you, download_file]
    )

demo.launch(share=True, enable_queue=False, debug=True, server_name="0.0.0.0")