Spaces:
Sleeping
Sleeping
File size: 14,384 Bytes
ac059f4 f3f4634 e3ca5f7 ac059f4 e3ca5f7 ac059f4 f3f4634 ac059f4 f3f4634 ac059f4 3f6f517 09b9691 3f6f517 f3f4634 ac059f4 f3f4634 ac059f4 99122c4 ac059f4 f3f4634 ac059f4 881d56d 3f6f517 c940f25 e3ca5f7 c940f25 e3ca5f7 881d56d e3ca5f7 fa490b8 e3ca5f7 881d56d e3ca5f7 09b9691 c940f25 e3ca5f7 09b9691 b61e699 09b9691 e3ca5f7 09b9691 e3ca5f7 fa490b8 c940f25 fa490b8 e3ca5f7 881d56d 3815be3 e3ca5f7 f3f4634 ac059f4 c940f25 f3f4634 c940f25 09b9691 e3ca5f7 f3f4634 c940f25 f3f4634 ac059f4 f3f4634 e3ca5f7 f3f4634 fa490b8 ac059f4 128981d ac059f4 f3f4634 128981d ac059f4 f3f4634 881d56d 3f6f517 881d56d e3ca5f7 5a343f4 e3ca5f7 f3f4634 e3ca5f7 f3f4634 3f6f517 f3f4634 e3ca5f7 322cc3a e3ca5f7 322cc3a f3f4634 881d56d 3f6f517 881d56d e3ca5f7 f3f4634 03f09ee f3f4634 09b9691 ac059f4 b61e699 09b9691 b61e699 09b9691 b61e699 09b9691 b61e699 f3f4634 322cc3a f3f4634 ac059f4 03f09ee ac059f4 f3f4634 e3ca5f7 f3f4634 b61e699 3f6f517 75a7169 f3f4634 ac059f4 128981d ac059f4 f3f4634 03f09ee 75a7169 03f09ee 881d56d e3ca5f7 09b9691 e3ca5f7 881d56d b61e699 3f6f517 881d56d fa490b8 881d56d fa490b8 ac059f4 c940f25 f3f4634 c940f25 f3f4634 ac059f4 3f6f517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
from pathlib import Path
from typing import Tuple
import yaml
import tempfile
import uuid
from dataclasses import dataclass, asdict
import numpy as np
import audiotools as at
import argbind
import gradio as gr
from vampnet.interface import Interface
from vampnet import mask as pmask
Interface = argbind.bind(Interface)
AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
conf = argbind.parse_args()
with argbind.scope(conf):
interface = Interface()
loader = AudioLoader()
print(f"interface device is {interface.device}")
dataset = at.data.datasets.AudioDataset(
loader,
sample_rate=interface.codec.sample_rate,
duration=interface.coarse.chunk_size_s,
n_examples=5000,
without_replacement=True,
)
checkpoints = {
"spotdl": {
"coarse": "./models/spotdl/coarse.pth",
"c2f": "./models/spotdl/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": True
},
"berta": {
"coarse": "./models/finetuned/berta-goldman-speech/coarse.pth",
"c2f": "./models/finetuned/berta-goldman-speech/c2f.pth",
"codec": "./model/spotdl/codec.pth",
"full_ckpt": True
},
"xeno-canto-2": {
"coarse": "./models/finetuned/xeno-canto-2/coarse.pth",
"c2f": "./models/finetuned/xeno-canto-2/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": True
},
"panchos": {
"coarse": "./models/finetuned/panchos/coarse.pth",
"c2f": "./models/finetuned/panchos/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": False
},
"tv-choir": {
"coarse": "./models/finetuned/tv-choir/coarse.pth",
"c2f": "./models/finetuned/tv-choir/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": False
},
"titi": {
"coarse": "./models/finetuned/titi/coarse.pth",
"c2f": "./models/finetuned/titi/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": False
},
"titi-clean": {
"coarse": "./models/finetuned/titi-clean/coarse.pth",
"c2f": "./models/finetuned/titi-clean/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": False
},
"breaks-steps": {
"coarse": "./models/finetuned/breaks-steps/coarse.pth",
"c2f": None, #"./models/finetuned/breaks-steps/c2f.pth",
"codec": "./models/spotdl/codec.pth",
"full_ckpt": False
},
}
interface.checkpoint_key = "spotdl"
OUT_DIR = Path("gradio-outputs")
OUT_DIR.mkdir(exist_ok=True, parents=True)
def load_audio(file):
print(file)
filepath = file.name
sig = at.AudioSignal.salient_excerpt(
filepath,
duration=interface.coarse.chunk_size_s
)
sig = interface.preprocess(sig)
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
out_dir.mkdir(parents=True, exist_ok=True)
sig.write(out_dir / "input.wav")
return sig.path_to_file
def load_random_audio():
index = np.random.randint(0, len(dataset))
sig = dataset[index]["signal"]
sig = interface.preprocess(sig)
out_dir = OUT_DIR / "tmp" / str(uuid.uuid4())
out_dir.mkdir(parents=True, exist_ok=True)
sig.write(out_dir / "input.wav")
return sig.path_to_file
def _vamp(data, return_mask=False):
# if our checkpoint key is different, we need to load a new checkpoint
if data[checkpoint_key] != interface.checkpoint_key:
print(f"loading checkpoint {data[checkpoint_key]}")
interface.lora_load(
checkpoints[data[checkpoint_key]]["coarse"],
checkpoints[data[checkpoint_key]]["c2f"],
checkpoints[data[checkpoint_key]]["full_ckpt"],
)
interface.checkpoint_key = data[checkpoint_key]
out_dir = OUT_DIR / str(uuid.uuid4())
out_dir.mkdir()
sig = at.AudioSignal(data[input_audio])
#pitch shift input
sig = sig.shift_pitch(data[input_pitch_shift])
# TODO: random pitch shift of segments in the signal to prompt! window size should be a parameter, pitch shift width should be a parameter
z = interface.encode(sig)
ncc = data[n_conditioning_codebooks]
# build the mask
mask = pmask.linear_random(z, data[rand_mask_intensity])
mask = pmask.mask_and(
mask, pmask.inpaint(
z,
interface.s2t(data[prefix_s]),
interface.s2t(data[suffix_s])
)
)
mask = pmask.mask_and(
mask, pmask.periodic_mask(
z,
data[periodic_p],
data[periodic_w],
random_roll=True
)
)
if data[onset_mask_width] > 0:
mask = pmask.mask_or(
mask, pmask.onset_mask(sig, z, interface, width=data[onset_mask_width])
)
# these should be the last two mask ops
mask = pmask.dropout(mask, data[dropout])
mask = pmask.codebook_unmask(mask, ncc)
print(f"created mask with: linear random {data[rand_mask_intensity]}, inpaint {data[prefix_s]}:{data[suffix_s]}, periodic {data[periodic_p]}:{data[periodic_w]}, dropout {data[dropout]}, codebook unmask {ncc}, onset mask {data[onset_mask_width]}, num steps {data[num_steps]}, init temp {data[temp]}, use coarse2fine {data[use_coarse2fine]}")
# save the mask as a txt file
np.savetxt(out_dir / "mask.txt", mask[:,0,:].long().cpu().numpy())
zv, mask_z = interface.coarse_vamp(
z,
mask=mask,
sampling_steps=data[num_steps],
temperature=data[temp]*10,
return_mask=True,
typical_filtering=data[typical_filtering],
typical_mass=data[typical_mass],
typical_min_tokens=data[typical_min_tokens],
gen_fn=interface.coarse.generate,
)
if use_coarse2fine:
zv = interface.coarse_to_fine(zv, temperature=data[temp])
sig = interface.to_signal(zv).cpu()
print("done")
sig.write(out_dir / "output.wav")
if return_mask:
mask = interface.to_signal(mask_z).cpu()
mask.write(out_dir / "mask.wav")
return sig.path_to_file, mask.path_to_file
else:
return sig.path_to_file
def vamp(data):
return _vamp(data, return_mask=True)
def api_vamp(data):
return _vamp(data, return_mask=False)
def save_vamp(data):
out_dir = OUT_DIR / "saved" / str(uuid.uuid4())
out_dir.mkdir(parents=True, exist_ok=True)
sig_in = at.AudioSignal(data[input_audio])
sig_out = at.AudioSignal(data[output_audio])
sig_in.write(out_dir / "input.wav")
sig_out.write(out_dir / "output.wav")
_data = {
"temp": data[temp],
"prefix_s": data[prefix_s],
"suffix_s": data[suffix_s],
"rand_mask_intensity": data[rand_mask_intensity],
"num_steps": data[num_steps],
"notes": data[notes_text],
"periodic_period": data[periodic_p],
"periodic_width": data[periodic_w],
"n_conditioning_codebooks": data[n_conditioning_codebooks],
"use_coarse2fine": data[use_coarse2fine],
"stretch_factor": data[stretch_factor],
}
# save with yaml
with open(out_dir / "data.yaml", "w") as f:
yaml.dump(_data, f)
import zipfile
zip_path = out_dir.with_suffix(".zip")
with zipfile.ZipFile(zip_path, "w") as zf:
for file in out_dir.iterdir():
zf.write(file, file.name)
return f"saved! your save code is {out_dir.stem}", zip_path
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
use_coarse2fine = gr.Checkbox(
label="use coarse2fine",
value=True
)
manual_audio_upload = gr.File(
label=f"upload some audio (will be randomly trimmed to max of {interface.coarse.chunk_size_s:.2f}s)",
file_types=["audio"]
)
load_random_audio_button = gr.Button("or load random audio")
input_audio = gr.Audio(
label="input audio",
interactive=False,
type="filepath",
)
audio_mask = gr.Audio(
label="audio mask (listen to this to hear the mask hints)",
interactive=False,
type="filepath",
)
# connect widgets
load_random_audio_button.click(
fn=load_random_audio,
inputs=[],
outputs=[ input_audio]
)
manual_audio_upload.change(
fn=load_audio,
inputs=[manual_audio_upload],
outputs=[ input_audio]
)
# mask settings
with gr.Column():
input_pitch_shift = gr.Slider(
label="input pitch shift (semitones)",
minimum=-36,
maximum=36,
step=1,
value=0,
)
rand_mask_intensity = gr.Slider(
label="random mask intensity. (If this is less than 1, scatters prompts throughout the audio, should be between 0.9 and 1.0)",
minimum=0.0,
maximum=1.0,
value=1.0
)
periodic_p = gr.Slider(
label="periodic prompt (0.0 means no hint, 2 - lots of hints, 8 - a couple of hints, 16 - occasional hint, 32 - very occasional hint, etc)",
minimum=0,
maximum=128,
step=1,
value=3,
)
periodic_w = gr.Slider(
label="periodic prompt width (steps, 1 step ~= 10milliseconds)",
minimum=1,
maximum=20,
step=1,
value=1,
)
onset_mask_width = gr.Slider(
label="onset mask width (steps, 1 step ~= 10milliseconds)",
minimum=0,
maximum=20,
step=1,
value=5,
)
with gr.Accordion("extras ", open=False):
n_conditioning_codebooks = gr.Number(
label="number of conditioning codebooks. probably 0",
value=0,
precision=0,
)
stretch_factor = gr.Slider(
label="time stretch factor",
minimum=0,
maximum=64,
step=1,
value=1,
)
with gr.Accordion("prefix/suffix hints", open=False):
prefix_s = gr.Slider(
label="prefix hint length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
suffix_s = gr.Slider(
label="suffix hint length (seconds)",
minimum=0.0,
maximum=10.0,
value=0.0
)
temp = gr.Slider(
label="temperature",
minimum=0.0,
maximum=1.5,
value=0.8
)
with gr.Accordion("sampling settings", open=False):
typical_filtering = gr.Checkbox(
label="typical filtering ",
value=True
)
typical_mass = gr.Slider(
label="typical mass (should probably stay between 0.1 and 0.5)",
minimum=0.01,
maximum=0.99,
value=0.15
)
typical_min_tokens = gr.Slider(
label="typical min tokens (should probably stay between 1 and 256)",
minimum=1,
maximum=256,
step=1,
value=64
)
num_steps = gr.Slider(
label="number of steps (should normally be between 12 and 36)",
minimum=1,
maximum=128,
step=1,
value=36
)
dropout = gr.Slider(
label="mask dropout",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.0
)
# mask settings
with gr.Column():
checkpoint_key = gr.Radio(
label="checkpoint",
choices=list(checkpoints.keys()),
value="spotdl"
)
vamp_button = gr.Button("vamp!!!")
output_audio = gr.Audio(
label="output audio",
interactive=False,
type="filepath"
)
notes_text = gr.Textbox(
label="type any notes about the generated audio here",
value="",
interactive=True
)
save_button = gr.Button("save vamp")
download_file = gr.File(
label="vamp to download will appear here",
interactive=False
)
use_as_input_button = gr.Button("use output as input")
thank_you = gr.Markdown("")
_inputs = {
input_audio,
num_steps,
temp,
prefix_s, suffix_s,
rand_mask_intensity,
periodic_p, periodic_w,
n_conditioning_codebooks,
dropout,
use_coarse2fine,
stretch_factor,
onset_mask_width,
input_pitch_shift,
typical_filtering,
typical_mass,
typical_min_tokens,
checkpoint_key
}
# connect widgets
vamp_button.click(
fn=vamp,
inputs=_inputs,
outputs=[output_audio, audio_mask],
)
api_vamp_button = gr.Button("api vamp")
api_vamp_button.click(
fn=api_vamp,
inputs=_inputs,
outputs=[output_audio],
api_name="vamp"
)
use_as_input_button.click(
fn=lambda x: x,
inputs=[output_audio],
outputs=[input_audio]
)
save_button.click(
fn=save_vamp,
inputs=_inputs | {notes_text, output_audio},
outputs=[thank_you, download_file]
)
demo.launch(share=True, enable_queue=False, debug=True, server_name="0.0.0.0")
|