File size: 4,231 Bytes
90b4364
 
 
 
 
3903f4f
ebc32f0
90b4364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc32f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b4364
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os

import gradio as gr

from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces
from manbits import _MANBIT_MODELS, _DEFAULT_MANBIT_MODEL, _gr_detect_manbits
from person import _PERSON_MODELS, _DEFAULT_PERSON_MODEL, _gr_detect_person

if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Tabs():
            with gr.Tab('Face Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_face_input_image = gr.Image(type='pil', label='Original Image')
                        gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model')
                        gr_face_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
                            gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')

                        gr_face_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_face_output_image = gr.Image(type='pil', label="Labeled")

                    gr_face_submit.click(
                        _gr_detect_faces,
                        inputs=[
                            gr_face_input_image, gr_face_model,
                            gr_face_infer_size, gr_face_score_threshold, gr_face_iou_threshold,
                        ],
                        outputs=[gr_face_output_image],
                    )

            with gr.Tab('Person Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_person_input_image = gr.Image(type='pil', label='Original Image')
                        gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
                        gr_person_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
                            gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')

                        gr_person_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_person_output_image = gr.Image(type='pil', label="Labeled")

                    gr_person_submit.click(
                        _gr_detect_person,
                        inputs=[
                            gr_person_input_image, gr_person_model,
                            gr_person_infer_size, gr_person_score_threshold, gr_person_iou_threshold,
                        ],
                        outputs=[gr_person_output_image],
                    )

            with gr.Tab('Manbits Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_manbit_input_image = gr.Image(type='pil', label='Original Image')
                        gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model')
                        gr_manbit_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
                            gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')

                        gr_manbit_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_manbit_output_image = gr.Image(type='pil', label="Labeled")

                    gr_manbit_submit.click(
                        _gr_detect_manbits,
                        inputs=[
                            gr_manbit_input_image, gr_manbit_model,
                            gr_manbit_infer_size, gr_manbit_score_threshold, gr_manbit_iou_threshold,
                        ],
                        outputs=[gr_manbit_output_image],
                    )

    demo.queue(os.cpu_count()).launch()