narugo1992 commited on
Commit
ebc32f0
·
1 Parent(s): 2dae70b

dev(narugo): add person detection

Browse files
Files changed (3) hide show
  1. app.py +25 -0
  2. person.py +38 -0
  3. yolo_.py +3 -0
app.py CHANGED
@@ -3,6 +3,7 @@ import os
3
  import gradio as gr
4
 
5
  from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces
 
6
 
7
  if __name__ == '__main__':
8
  with gr.Blocks() as demo:
@@ -31,4 +32,28 @@ if __name__ == '__main__':
31
  outputs=[gr_face_output_image],
32
  )
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  demo.queue(os.cpu_count()).launch()
 
3
  import gradio as gr
4
 
5
  from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces
6
+ from person import _PERSON_MODELS, _DEFAULT_PERSON_MODEL, _gr_detect_person
7
 
8
  if __name__ == '__main__':
9
  with gr.Blocks() as demo:
 
32
  outputs=[gr_face_output_image],
33
  )
34
 
35
+ with gr.Tab('Person Detection'):
36
+ with gr.Row():
37
+ with gr.Column():
38
+ gr_person_input_image = gr.Image(type='pil', label='Original Image')
39
+ gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
40
+ gr_person_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size')
41
+ with gr.Row():
42
+ gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
43
+ gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')
44
+
45
+ gr_person_submit = gr.Button(value='Submit', variant='primary')
46
+
47
+ with gr.Column():
48
+ gr_person_output_image = gr.Image(type='pil', label="Labeled")
49
+
50
+ gr_person_submit.click(
51
+ _gr_detect_person,
52
+ inputs=[
53
+ gr_person_input_image, gr_person_model,
54
+ gr_person_infer_size, gr_person_score_threshold, gr_person_iou_threshold,
55
+ ],
56
+ outputs=[gr_person_output_image],
57
+ )
58
+
59
  demo.queue(os.cpu_count()).launch()
person.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import lru_cache
2
+
3
+ from huggingface_hub import hf_hub_download
4
+ from imgutils.data import ImageTyping, load_image, rgb_encode
5
+
6
+ from onnx_ import _open_onnx_model
7
+ from plot import plot_detection
8
+ from yolo_ import _image_preprocess, _data_simple_postprocess
9
+
10
+ _PERSON_MODELS = [
11
+ 'person_detect_best_s.onnx',
12
+ ]
13
+ _DEFAULT_PERSON_MODEL = _PERSON_MODELS[0]
14
+
15
+
16
+ @lru_cache()
17
+ def _open_person_detect_model(model_name):
18
+ return _open_onnx_model(hf_hub_download(
19
+ 'deepghs/imgutils-models',
20
+ f'person_detect/{model_name}'
21
+ ))
22
+
23
+
24
+ def detect_person(image: ImageTyping, model_name: str, max_infer_size=1216,
25
+ conf_threshold: float = 0.25, iou_threshold: float = 0.7):
26
+ image = load_image(image, mode='RGB')
27
+ new_image, old_size, new_size = _image_preprocess(image, max_infer_size)
28
+
29
+ data = rgb_encode(new_image)[None, ...]
30
+ output, = _open_person_detect_model(model_name).run(['output0'], {'images': data})
31
+ return _data_simple_postprocess(output[0], conf_threshold, iou_threshold, old_size, new_size)
32
+
33
+
34
+ def _gr_detect_person(image: ImageTyping, model_name: str, max_infer_size=1216,
35
+ conf_threshold: float = 0.25, iou_threshold: float = 0.7):
36
+ ret = detect_person(image, model_name, max_infer_size, conf_threshold, iou_threshold)
37
+ detections = [(box, 0, score) for box, score in ret]
38
+ return plot_detection(image, detections, ['person'])
yolo_.py CHANGED
@@ -92,6 +92,9 @@ def _data_simple_postprocess(output, conf_threshold, iou_threshold, old_size, ne
92
  scores = output[4, :]
93
  records = sorted(zip(boxes, scores), key=lambda x: -x[1])
94
 
 
 
 
95
  boxes = _yolo_xywh2xyxy(np.stack([bx for bx, _ in records]))
96
  scores = np.stack([score for _, score in records])
97
  idx = _yolo_nms(boxes, scores, thresh=iou_threshold)
 
92
  scores = output[4, :]
93
  records = sorted(zip(boxes, scores), key=lambda x: -x[1])
94
 
95
+ if not records:
96
+ return []
97
+
98
  boxes = _yolo_xywh2xyxy(np.stack([bx for bx, _ in records]))
99
  scores = np.stack([score for _, score in records])
100
  idx = _yolo_nms(boxes, scores, thresh=iou_threshold)