.gitignore CHANGED
@@ -1,4 +1,2 @@
1
  .DS_Store
2
- .env
3
- __pycache__/*
4
- gensim-data/*
 
1
  .DS_Store
2
+ .env
 
 
.python-version DELETED
@@ -1 +0,0 @@
1
- 3.11.13
 
 
__pycache__/asl_gloss.cpython-311.pyc ADDED
Binary file (14.3 kB). View file
 
__pycache__/document_parsing.cpython-311.pyc ADDED
Binary file (15.2 kB). View file
 
__pycache__/document_parsing.cpython-313.pyc ADDED
Binary file (10.6 kB). View file
 
__pycache__/vectorizer.cpython-311.pyc ADDED
Binary file (7.07 kB). View file
 
vectorizer.py CHANGED
@@ -1,6 +1,5 @@
1
  import gensim
2
  import gensim.downloader
3
- from gensim.models import KeyedVectors
4
  import numpy as np
5
  import pandas as pd
6
  import os
@@ -19,16 +18,8 @@ class Vectorizer:
19
  """
20
  Returns a KeyedVector object loaded from gensim
21
  """
22
- model_path = os.path.join(os.getcwd(), 'gensim-data', 'GoogleNews-vectors-negative300.bin.gz')
23
  try:
24
- print(f"Loading model from {model_path}")
25
- kv = KeyedVectors.load_word2vec_format(model_path, binary=True)
26
- print("Word2Vec model loaded successfully as KeyedVectors object.")
27
- return kv
28
- except FileNotFoundError:
29
- print(f"Error: Model file not found at {model_path}. Trying to download...")
30
  kv = gensim.downloader.load(model_name) # returns a keyedvector
31
- print("Word2Vec model loaded successfully as KeyedVectors object.")
32
  return kv
33
  except Exception as e:
34
  print(f"Unable to load embedding model from gensim: {e}")
@@ -52,24 +43,10 @@ class Vectorizer:
52
 
53
  def encode(self, word):
54
  print(f"encoding {word}")
55
- if self.kv is None:
56
- print("KeyedVectors not loaded")
57
- return None
58
- if word in self.kv.key_to_index:
59
  return self.kv[word]
60
  else:
61
  print(f"Error: {word} is not in the KeyedVector's vocabulary")
62
- # Try to find closest match
63
- try:
64
- closest_matches = self.kv.most_similar(word, topn=3)
65
- if closest_matches:
66
- closest_word = closest_matches[0][0]
67
- print(f"Using closest match '{closest_word}' for '{word}'")
68
- return self.kv[closest_word]
69
- else:
70
- print(f"No similar words found for '{word}'")
71
- except Exception as e:
72
- print(f"Error finding similar words: {e}")
73
  return None
74
 
75
  def encode_and_format(self, word):
@@ -84,11 +61,10 @@ class Vectorizer:
84
  try:
85
  await self.ensure_supabase_initialized()
86
  query_embedding = self.encode(query)
87
-
88
  if query_embedding is None:
89
  return {
90
  "match": False,
91
- "error": f"'{query}' not in vocabulary and no similar words found"
92
  }
93
 
94
  query_embedding = query_embedding.tolist()
@@ -154,11 +130,8 @@ def load_filtered_kv(model_name='word2vec-google-news-300', vocab=None):
154
  async def main():
155
  vectorizer = Vectorizer()
156
 
157
- # Test exact word match
158
  vector = vectorizer.encode("test")
159
  print(vector)
160
-
161
- # Test words not in vocabulary with closest match fallback
162
  result = await vectorizer.vector_query_from_supabase("dog")
163
  print(result)
164
  result = await vectorizer.vector_query_from_supabase("cat")
 
1
  import gensim
2
  import gensim.downloader
 
3
  import numpy as np
4
  import pandas as pd
5
  import os
 
18
  """
19
  Returns a KeyedVector object loaded from gensim
20
  """
 
21
  try:
 
 
 
 
 
 
22
  kv = gensim.downloader.load(model_name) # returns a keyedvector
 
23
  return kv
24
  except Exception as e:
25
  print(f"Unable to load embedding model from gensim: {e}")
 
43
 
44
  def encode(self, word):
45
  print(f"encoding {word}")
46
+ if self.kv is not None and word in self.kv.key_to_index:
 
 
 
47
  return self.kv[word]
48
  else:
49
  print(f"Error: {word} is not in the KeyedVector's vocabulary")
 
 
 
 
 
 
 
 
 
 
 
50
  return None
51
 
52
  def encode_and_format(self, word):
 
61
  try:
62
  await self.ensure_supabase_initialized()
63
  query_embedding = self.encode(query)
 
64
  if query_embedding is None:
65
  return {
66
  "match": False,
67
+ "error": f"'{query}' not in vocabulary"
68
  }
69
 
70
  query_embedding = query_embedding.tolist()
 
130
  async def main():
131
  vectorizer = Vectorizer()
132
 
 
133
  vector = vectorizer.encode("test")
134
  print(vector)
 
 
135
  result = await vectorizer.vector_query_from_supabase("dog")
136
  print(result)
137
  result = await vectorizer.vector_query_from_supabase("cat")