Spaces:
Sleeping
Sleeping
File size: 6,539 Bytes
37e13fe 4be2365 37e13fe 4be2365 37e13fe 4be2365 37e13fe 4be2365 37e13fe 4be2365 47ac829 4be2365 47ac829 4be2365 47ac829 4be2365 47ac829 4be2365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import logging
import os
import random
import tempfile
import time
import spaces
from easydict import EasyDict
import numpy as np
import torch
from dav.pipelines import DAVPipeline
from dav.models import UNetSpatioTemporalRopeConditionModel
from diffusers import AutoencoderKLTemporalDecoder, FlowMatchEulerDiscreteScheduler
from dav.utils import img_utils
def seed_all(seed: int = 0):
"""
Set random seeds for reproducibility.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Initialize logging
logging.basicConfig(level=logging.INFO)
# Load models once to avoid reloading on every inference
def load_models(model_base, device):
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
model_base, subfolder="scheduler"
)
unet = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet"
)
unet_interp = UNetSpatioTemporalRopeConditionModel.from_pretrained(
model_base, subfolder="unet_interp"
)
pipe = DAVPipeline(
vae=vae,
unet=unet,
unet_interp=unet_interp,
scheduler=scheduler,
)
pipe = pipe.to(device)
return pipe
# Load models at startup
MODEL_BASE = "hhyangcs/depth-any-video"
DEVICE_TYPE = "cuda"
DEVICE = torch.device(DEVICE_TYPE)
pipe = load_models(MODEL_BASE, DEVICE)
@spaces.GPU(duration=140)
def depth_any_video(
file,
denoise_steps=3,
num_frames=32,
decode_chunk_size=16,
num_interp_frames=16,
num_overlap_frames=6,
max_resolution=1024,
):
"""
Perform depth estimation on the uploaded video/image.
"""
with open(file, "rb") as _file:
with tempfile.TemporaryDirectory() as tmp_dir:
# Save the uploaded file
input_path = os.path.join(tmp_dir, file.name)
with open(input_path, "wb") as f:
f.write(_file.read())
# Set up output directory
output_dir = os.path.join(tmp_dir, "output")
os.makedirs(output_dir, exist_ok=True)
# Prepare configuration
cfg = EasyDict(
{
"model_base": MODEL_BASE,
"data_path": input_path,
"output_dir": output_dir,
"denoise_steps": denoise_steps,
"num_frames": num_frames,
"decode_chunk_size": decode_chunk_size,
"num_interp_frames": num_interp_frames,
"num_overlap_frames": num_overlap_frames,
"max_resolution": max_resolution,
"seed": 666,
}
)
seed_all(cfg.seed)
file_name = os.path.splitext(os.path.basename(cfg.data_path))[0]
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
if is_video:
num_interp_frames = cfg.num_interp_frames
num_overlap_frames = cfg.num_overlap_frames
num_frames = cfg.num_frames
assert num_frames % 2 == 0, "num_frames should be even."
assert (
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
), "Invalid frame overlap."
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
num_frames // 2
)
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
else:
image = img_utils.read_image(cfg.data_path)
image = img_utils.imresize_max(image, cfg.max_resolution)
image = img_utils.imcrop_multi(image)
image_tensor = np.ascontiguousarray(
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
)
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
with torch.no_grad(), torch.autocast(
device_type=DEVICE_TYPE, dtype=torch.float16
):
pipe_out = pipe(
image_tensor,
num_frames=cfg.num_frames,
num_overlap_frames=cfg.num_overlap_frames,
num_interp_frames=cfg.num_interp_frames,
decode_chunk_size=cfg.decode_chunk_size,
num_inference_steps=cfg.denoise_steps,
)
disparity = pipe_out.disparity
disparity_colored = pipe_out.disparity_colored
image = pipe_out.image
# (N, H, 2 * W, 3)
merged = np.concatenate(
[
image,
disparity_colored,
],
axis=2,
)
if is_video:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.mp4")
img_utils.write_video(
output_path,
merged,
fps,
)
return output_path
else:
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.png")
img_utils.write_image(
output_path,
merged[0],
)
return output_path
# Define Gradio interface
title = "Depth Any Video with Scalable Synthetic Data"
description = """
Upload a video or image to perform depth estimation using the Depth Any Video model.
Adjust the parameters as needed to control the inference process.
"""
iface = gr.Interface(
fn=depth_any_video,
inputs=[
gr.File(label="Upload Video/Image"),
gr.Slider(1, 10, step=1, value=3, label="Denoise Steps"),
gr.Slider(16, 64, step=1, value=32, label="Number of Frames"),
gr.Slider(8, 32, step=1, value=16, label="Decode Chunk Size"),
gr.Slider(8, 32, step=1, value=16, label="Number of Interpolation Frames"),
gr.Slider(2, 10, step=1, value=6, label="Number of Overlap Frames"),
gr.Slider(512, 2048, step=32, value=1024, label="Maximum Resolution"),
],
outputs=gr.Video(label="Depth Enhanced Video/Image"),
title=title,
description=description,
examples=[["demos/arch_2.jpg"], ["demos/wooly_mammoth.mp4"]],
allow_flagging="never",
analytics_enabled=False,
)
if __name__ == "__main__":
iface.launch(share=True)
|