Spaces:
Running
on
Zero
Running
on
Zero
depthanyvideo
commited on
Commit
•
4be2365
1
Parent(s):
e9f3e75
update
Browse files
app.py
CHANGED
@@ -1,15 +1,194 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import spaces
|
|
|
|
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
zero = torch.Tensor([0]).cuda()
|
6 |
-
print(zero.device) # <-- 'cpu' 🤔
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
14 |
-
demo.launch()
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import tempfile
|
6 |
+
import time
|
7 |
import spaces
|
8 |
+
from easydict import EasyDict
|
9 |
+
import numpy as np
|
10 |
import torch
|
11 |
+
from dav.pipelines import DAVPipeline
|
12 |
+
from dav.models import UNetSpatioTemporalRopeConditionModel
|
13 |
+
from diffusers import AutoencoderKLTemporalDecoder, FlowMatchEulerDiscreteScheduler
|
14 |
+
from dav.utils import img_utils
|
15 |
|
|
|
|
|
16 |
|
17 |
+
def seed_all(seed: int = 0):
|
18 |
+
"""
|
19 |
+
Set random seeds for reproducibility.
|
20 |
+
"""
|
21 |
+
random.seed(seed)
|
22 |
+
np.random.seed(seed)
|
23 |
+
torch.manual_seed(seed)
|
24 |
+
torch.cuda.manual_seed_all(seed)
|
25 |
|
|
|
|
|
26 |
|
27 |
+
# Initialize logging
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
|
30 |
+
|
31 |
+
# Load models once to avoid reloading on every inference
|
32 |
+
def load_models(model_base, device):
|
33 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(model_base, subfolder="vae")
|
34 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
35 |
+
model_base, subfolder="scheduler"
|
36 |
+
)
|
37 |
+
unet = UNetSpatioTemporalRopeConditionModel.from_pretrained(
|
38 |
+
model_base, subfolder="unet"
|
39 |
+
)
|
40 |
+
unet_interp = UNetSpatioTemporalRopeConditionModel.from_pretrained(
|
41 |
+
model_base, subfolder="unet_interp"
|
42 |
+
)
|
43 |
+
pipe = DAVPipeline(
|
44 |
+
vae=vae,
|
45 |
+
unet=unet,
|
46 |
+
unet_interp=unet_interp,
|
47 |
+
scheduler=scheduler,
|
48 |
+
)
|
49 |
+
pipe = pipe.to(device)
|
50 |
+
return pipe
|
51 |
+
|
52 |
+
|
53 |
+
# Load models at startup
|
54 |
+
MODEL_BASE = "hhyangcs/depth-any-video"
|
55 |
+
DEVICE_TYPE = "cuda"
|
56 |
+
DEVICE = torch.device(DEVICE_TYPE)
|
57 |
+
pipe = load_models(MODEL_BASE, DEVICE)
|
58 |
+
|
59 |
+
|
60 |
+
@spaces.GPU(duration=140)
|
61 |
+
def depth_any_video(
|
62 |
+
file,
|
63 |
+
denoise_steps=3,
|
64 |
+
num_frames=32,
|
65 |
+
decode_chunk_size=16,
|
66 |
+
num_interp_frames=16,
|
67 |
+
num_overlap_frames=6,
|
68 |
+
max_resolution=1024,
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
Perform depth estimation on the uploaded video/image.
|
72 |
+
"""
|
73 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
74 |
+
# Save the uploaded file
|
75 |
+
input_path = os.path.join(tmp_dir, file.name)
|
76 |
+
with open(input_path, "wb") as f:
|
77 |
+
f.write(file.read())
|
78 |
+
|
79 |
+
# Set up output directory
|
80 |
+
output_dir = os.path.join(tmp_dir, "output")
|
81 |
+
os.makedirs(output_dir, exist_ok=True)
|
82 |
+
|
83 |
+
# Prepare configuration
|
84 |
+
cfg = EasyDict(
|
85 |
+
{
|
86 |
+
"model_base": MODEL_BASE,
|
87 |
+
"data_path": input_path,
|
88 |
+
"output_dir": output_dir,
|
89 |
+
"denoise_steps": denoise_steps,
|
90 |
+
"num_frames": num_frames,
|
91 |
+
"decode_chunk_size": decode_chunk_size,
|
92 |
+
"num_interp_frames": num_interp_frames,
|
93 |
+
"num_overlap_frames": num_overlap_frames,
|
94 |
+
"max_resolution": max_resolution,
|
95 |
+
"seed": 666,
|
96 |
+
}
|
97 |
+
)
|
98 |
+
|
99 |
+
seed_all(cfg.seed)
|
100 |
+
|
101 |
+
file_name = os.path.splitext(os.path.basename(cfg.data_path))[0]
|
102 |
+
is_video = cfg.data_path.lower().endswith((".mp4", ".avi", ".mov", ".mkv"))
|
103 |
+
|
104 |
+
if is_video:
|
105 |
+
num_interp_frames = cfg.num_interp_frames
|
106 |
+
num_overlap_frames = cfg.num_overlap_frames
|
107 |
+
num_frames = cfg.num_frames
|
108 |
+
assert num_frames % 2 == 0, "num_frames should be even."
|
109 |
+
assert (
|
110 |
+
2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
|
111 |
+
), "Invalid frame overlap."
|
112 |
+
max_frames = (num_interp_frames + 2 - num_overlap_frames) * (
|
113 |
+
num_frames // 2
|
114 |
+
)
|
115 |
+
image, fps = img_utils.read_video(cfg.data_path, max_frames=max_frames)
|
116 |
+
else:
|
117 |
+
image = img_utils.read_image(cfg.data_path)
|
118 |
+
|
119 |
+
image = img_utils.imresize_max(image, cfg.max_resolution)
|
120 |
+
image = img_utils.imcrop_multi(image)
|
121 |
+
image_tensor = np.ascontiguousarray(
|
122 |
+
[_img.transpose(2, 0, 1) / 255.0 for _img in image]
|
123 |
+
)
|
124 |
+
image_tensor = torch.from_numpy(image_tensor).to(DEVICE)
|
125 |
+
|
126 |
+
with torch.no_grad(), torch.autocast(
|
127 |
+
device_type=DEVICE_TYPE, dtype=torch.float16
|
128 |
+
):
|
129 |
+
pipe_out = pipe(
|
130 |
+
image_tensor,
|
131 |
+
num_frames=cfg.num_frames,
|
132 |
+
num_overlap_frames=cfg.num_overlap_frames,
|
133 |
+
num_interp_frames=cfg.num_interp_frames,
|
134 |
+
decode_chunk_size=cfg.decode_chunk_size,
|
135 |
+
num_inference_steps=cfg.denoise_steps,
|
136 |
+
)
|
137 |
+
|
138 |
+
disparity = pipe_out.disparity
|
139 |
+
disparity_colored = pipe_out.disparity_colored
|
140 |
+
image = pipe_out.image
|
141 |
+
# (N, H, 2 * W, 3)
|
142 |
+
merged = np.concatenate(
|
143 |
+
[
|
144 |
+
image,
|
145 |
+
disparity_colored,
|
146 |
+
],
|
147 |
+
axis=2,
|
148 |
+
)
|
149 |
+
|
150 |
+
if is_video:
|
151 |
+
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.mp4")
|
152 |
+
img_utils.write_video(
|
153 |
+
output_path,
|
154 |
+
merged,
|
155 |
+
fps,
|
156 |
+
)
|
157 |
+
return output_path
|
158 |
+
else:
|
159 |
+
output_path = os.path.join(cfg.output_dir, f"{file_name}_depth.png")
|
160 |
+
img_utils.write_image(
|
161 |
+
output_path,
|
162 |
+
merged[0],
|
163 |
+
)
|
164 |
+
return output_path
|
165 |
+
|
166 |
+
|
167 |
+
# Define Gradio interface
|
168 |
+
title = "Depth Any Video with Scalable Synthetic Data"
|
169 |
+
description = """
|
170 |
+
Upload a video or image to perform depth estimation using the Depth Any Video model.
|
171 |
+
Adjust the parameters as needed to control the inference process.
|
172 |
+
"""
|
173 |
+
|
174 |
+
iface = gr.Interface(
|
175 |
+
fn=depth_any_video,
|
176 |
+
inputs=[
|
177 |
+
gr.File(label="Upload Video/Image"),
|
178 |
+
gr.Slider(1, 10, step=1, value=3, label="Denoise Steps"),
|
179 |
+
gr.Slider(16, 64, step=1, value=32, label="Number of Frames"),
|
180 |
+
gr.Slider(8, 32, step=1, value=16, label="Decode Chunk Size"),
|
181 |
+
gr.Slider(8, 32, step=1, value=16, label="Number of Interpolation Frames"),
|
182 |
+
gr.Slider(2, 10, step=1, value=6, label="Number of Overlap Frames"),
|
183 |
+
gr.Slider(512, 2048, step=32, value=1024, label="Maximum Resolution"),
|
184 |
+
],
|
185 |
+
outputs=gr.Video(label="Depth Enhanced Video/Image"),
|
186 |
+
title=title,
|
187 |
+
description=description,
|
188 |
+
examples=[["demos/arch_2.jpg"], ["demos/wooly_mammoth.mp4"]],
|
189 |
+
allow_flagging="never",
|
190 |
+
analytics_enabled=False,
|
191 |
+
)
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
iface.launch(share=True)
|