File size: 6,564 Bytes
24de7c1
 
 
 
 
92ba087
1f112e1
83335e9
 
 
92ba087
24de7c1
3a8035c
92ba087
c93e7fa
 
24de7c1
 
 
 
 
 
83335e9
 
 
 
532a9fd
99a4ea4
 
60afc29
 
6e797dc
 
 
0d97318
 
 
 
24de7c1
0d97318
 
 
92ba087
 
 
 
 
 
 
 
 
0d97318
 
92ba087
0d97318
92ba087
0d97318
 
 
 
 
c93e7fa
 
0d97318
 
92ba087
c93e7fa
 
92ba087
 
 
 
0d97318
 
 
 
 
0f27244
 
 
e29d248
f707c12
c93e7fa
0f27244
c93e7fa
 
 
 
 
 
0f27244
 
 
 
 
 
 
 
e29d248
0f27244
84a3a3a
0f27244
 
 
a70d919
6e797dc
92ba087
0f27244
 
 
 
 
bc56fe8
 
 
 
 
 
92ba087
 
 
 
 
 
0f27244
 
 
92ba087
013aa35
0f27244
 
 
 
 
 
 
 
 
 
 
 
92ba087
6e797dc
5de2c92
1d01cd7
fb28392
99a4ea4
83335e9
5de2c92
24de7c1
c10f0c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from omegaconf import OmegaConf
from query import VectaraQuery
import os

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback
from langdetect import detect_langs
from langdetect import DetectorFactory
from langcodes import Language

from PIL import Image

max_examples = 4
languages = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Arabic': 'ar', 'Chinese': 'zh-cn', 
             'Hebrew': 'he', 'Hindi': 'hi', 'Italian': 'it', 'Japanese': 'ja', 'Korean': 'ko', 'Portuguese': 'pt'}

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def identifyLanguage(response):
    lang_code = detect_langs(response)[0].lang
    return Language.make(language=lang_code).display_name()

def thumbs_feedback(feedback, **kwargs):
    print(f'Debug: Feedback Received {feedback["score"]} FROM user question {kwargs.get("prompt", "No user input")} AND chat response {kwargs.get("response", "No chat response")}. Detected response language {kwargs.get("language", "unknown")}')
    # print(f'Debug: Feedback Received {feedback["score"]} FROM user question {kwargs.get("prompt", "No user input")} AND chat response {kwargs.get("response", "No chat response")}')
    st.session_state.feedback_key += 1

if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def launch_bot():
    def generate_response(question):
        response = vq.submit_query(question)
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question)
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        corpus_keys = str(os.environ['corpus_keys']).split(',')
        cfg = OmegaConf.create({
            'corpus_keys': corpus_keys,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', None),
            'language': 'English'
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.language = cfg.language
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n")

        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.language = cfg.language
            st.rerun()

        st.markdown("\n")
        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        

    st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.ex_prompt = None
    
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt) 
                response = st.write_stream(stream) 
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"prompt": st.session_state.messages[-2]["content"],
                                                "response": st.session_state.messages[-1]["content"],
                                                "language": identifyLanguage(st.session_state.messages[-1]["content"])})
        
if __name__ == "__main__":
    launch_bot()