Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,57 +11,56 @@ def isTrue(x) -> bool:
|
|
11 |
return x
|
12 |
return x.strip().lower() == 'true'
|
13 |
|
14 |
-
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
return response
|
19 |
-
|
20 |
-
def generate_streaming_response(question):
|
21 |
-
response = vq.submit_query_streaming(question)
|
22 |
-
return response
|
23 |
-
|
24 |
-
if 'cfg' not in st.session_state:
|
25 |
-
corpus_ids = str(os.environ['corpus_ids']).split(',')
|
26 |
-
cfg = OmegaConf.create({
|
27 |
-
'customer_id': str(os.environ['customer_id']),
|
28 |
-
'corpus_ids': corpus_ids,
|
29 |
-
'api_key': str(os.environ['api_key']),
|
30 |
-
'title': os.environ['title'],
|
31 |
-
'description': os.environ['description'],
|
32 |
-
'source_data_desc': os.environ['source_data_desc'],
|
33 |
-
'streaming': isTrue(os.environ.get('streaming', False)),
|
34 |
-
'prompt_name': os.environ.get('prompt_name', None),
|
35 |
-
'examples': os.environ.get('examples', None)
|
36 |
-
})
|
37 |
-
st.session_state.cfg = cfg
|
38 |
-
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)
|
39 |
-
|
40 |
-
cfg = st.session_state.cfg
|
41 |
-
vq = st.session_state.vq
|
42 |
-
st.set_page_config(page_title=cfg.title, layout="wide")
|
43 |
-
|
44 |
-
# left side content
|
45 |
-
with st.sidebar:
|
46 |
-
image = Image.open('Vectara-logo.png')
|
47 |
-
st.markdown(f"## Welcome to {cfg.title}\n\n"
|
48 |
-
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
if "messages" not in st.session_state.keys():
|
66 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
67 |
|
|
|
11 |
return x
|
12 |
return x.strip().lower() == 'true'
|
13 |
|
14 |
+
def launch_bot():
|
15 |
+
def generate_response(question):
|
16 |
+
response = vq.submit_query(question)
|
17 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def generate_streaming_response(question):
|
20 |
+
response = vq.submit_query_streaming(question)
|
21 |
+
return response
|
22 |
+
|
23 |
+
if 'cfg' not in st.session_state:
|
24 |
+
corpus_ids = str(os.environ['corpus_ids']).split(',')
|
25 |
+
cfg = OmegaConf.create({
|
26 |
+
'customer_id': str(os.environ['customer_id']),
|
27 |
+
'corpus_ids': corpus_ids,
|
28 |
+
'api_key': str(os.environ['api_key']),
|
29 |
+
'title': os.environ['title'],
|
30 |
+
'description': os.environ['description'],
|
31 |
+
'source_data_desc': os.environ['source_data_desc'],
|
32 |
+
'streaming': isTrue(os.environ.get('streaming', False)),
|
33 |
+
'prompt_name': os.environ.get('prompt_name', None),
|
34 |
+
'examples': os.environ.get('examples', None)
|
35 |
+
})
|
36 |
+
st.session_state.cfg = cfg
|
37 |
+
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)
|
38 |
+
|
39 |
+
cfg = st.session_state.cfg
|
40 |
+
vq = st.session_state.vq
|
41 |
+
st.set_page_config(page_title=cfg.title, layout="wide")
|
42 |
+
|
43 |
+
# left side content
|
44 |
+
with st.sidebar:
|
45 |
+
image = Image.open('Vectara-logo.png')
|
46 |
+
st.markdown(f"## Welcome to {cfg.title}\n\n"
|
47 |
+
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
|
48 |
+
|
49 |
+
st.markdown("---")
|
50 |
+
st.markdown(
|
51 |
+
"## How this works?\n"
|
52 |
+
"This app was built with [Vectara](https://vectara.com).\n"
|
53 |
+
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
|
54 |
+
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
|
55 |
+
)
|
56 |
+
st.markdown("---")
|
57 |
+
st.image(image, width=250)
|
58 |
+
|
59 |
+
st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
|
60 |
+
st.markdown(f"<center> <h4> {cfg.description} </h4> </center>", unsafe_allow_html=True)
|
61 |
+
|
62 |
|
63 |
+
with streamlit_analytics.track():
|
|
|
64 |
if "messages" not in st.session_state.keys():
|
65 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
66 |
|