File size: 10,176 Bytes
b8e6a49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dfc17d
b8e6a49
 
 
 
 
 
a8ff319
b8e6a49
 
f3332c3
1dfc17d
b8e6a49
7459972
b8e6a49
 
 
 
 
 
ee0d936
1dfc17d
 
 
 
 
 
 
 
 
b8e6a49
 
 
8cc7e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccc2b6
8cc7e65
 
9194752
 
 
 
 
8cc7e65
 
 
 
 
 
 
 
 
 
 
e907f73
9194752
8cc7e65
 
 
 
 
 
 
7ccc2b6
8cc7e65
 
9194752
8cc7e65
 
9194752
 
8cc7e65
 
 
 
 
 
 
 
 
 
 
 
e907f73
9194752
8cc7e65
 
a8ff319
b8e6a49
 
 
 
 
7ccc2b6
dd9221f
b8e6a49
 
 
 
7ccc2b6
b8e6a49
 
 
 
 
 
 
 
 
ee0d936
 
b8e6a49
 
ee0d936
 
1dfc17d
b8e6a49
 
 
 
ee0d936
826449b
b8e6a49
 
 
8cc7e65
 
 
 
f1df253
8cc7e65
bb15fb2
 
 
 
 
f1df253
8cc7e65
109bc13
b8e6a49
9194752
b8e6a49
 
 
 
 
 
1dfc17d
 
 
 
f1df253
 
b8e6a49
 
 
 
 
 
f1df253
 
 
b8e6a49
 
8cc7e65
 
 
 
 
 
 
 
 
b8e6a49
 
 
 
 
 
 
 
 
8cc7e65
b8e6a49
27111fb
b8e6a49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb15fb2
9194752
b8e6a49
27111fb
 
 
 
 
 
 
7ccc2b6
27111fb
9194752
27111fb
 
 
b8e6a49
 
 
 
 
 
 
 
 
bb15fb2
9194752
b8e6a49
27111fb
 
 
 
 
 
 
7ccc2b6
27111fb
9194752
27111fb
 
 
b8e6a49
8cc7e65
b8e6a49
 
 
 
 
7ccc2b6
b8e6a49
9194752
b8e6a49
3911c7d
b8e6a49
8cc7e65
b8e6a49
 
 
 
 
7ccc2b6
b8e6a49
9194752
b8e6a49
 
 
0e6190d
 
 
 
 
 
 
b8e6a49
 
 
 
 
e907f73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#!/usr/bin/env python3
#
# Copyright      2022  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# References:
# https://gradio.app/docs/#dropdown

import base64
import logging
import os
import time
from datetime import datetime

import gradio as gr
import torch
import torchaudio

from examples import examples
from model import decode, get_pretrained_model, language_to_models, sample_rate

languages = list(language_to_models.keys())


def convert_to_wav(in_filename: str) -> str:
    """Convert the input audio file to a wave file"""
    out_filename = in_filename + ".wav"
    logging.info(f"Converting '{in_filename}' to '{out_filename}'")
    _ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
    _ = os.system(
        f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 '{out_filename}.flac'"
    )

    with open(out_filename + ".flac", "rb") as f:
        s = "\n" + out_filename + "\n"
        s += base64.b64encode(f.read()).decode()
        logging.info(s)

    return out_filename


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def process_uploaded_file(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    in_filename: str,
):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first upload a file and then click "
            'the button "submit for recognition"',
            "result_item_error",
        )

    logging.info(f"Processing uploaded file: {in_filename}")
    try:
        return process(
            in_filename=in_filename,
            language=language,
            repo_id=repo_id,
            decoding_method=decoding_method,
            num_active_paths=num_active_paths,
        )
    except Exception as e:
        logging.info(str(e))
        return "", build_html_output(str(e), "result_item_error")


def process_microphone(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    in_filename: str,
):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first click 'Record from microphone', speak, "
            "click 'Stop recording', and then "
            "click the button 'submit for recognition'",
            "result_item_error",
        )

    logging.info(f"Processing microphone: {in_filename}")
    try:
        return process(
            in_filename=in_filename,
            language=language,
            repo_id=repo_id,
            decoding_method=decoding_method,
            num_active_paths=num_active_paths,
        )
    except Exception as e:
        logging.info(str(e))
        return "", build_html_output(str(e), "result_item_error")


@torch.no_grad()
def process(
    language: str,
    repo_id: str,
    decoding_method: str,
    num_active_paths: int,
    in_filename: str,
):
    logging.info(f"language: {language}")
    logging.info(f"repo_id: {repo_id}")
    logging.info(f"decoding_method: {decoding_method}")
    logging.info(f"num_active_paths: {num_active_paths}")
    logging.info(f"in_filename: {in_filename}")

    filename = convert_to_wav(in_filename)

    now = datetime.now()
    date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    logging.info(f"Started at {date_time}")

    start = time.time()

    recognizer = get_pretrained_model(
        repo_id,
        decoding_method=decoding_method,
        num_active_paths=num_active_paths,
    )

    text = decode(recognizer, filename)

    date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    end = time.time()

    metadata = torchaudio.info(filename)
    duration = metadata.num_frames / sample_rate
    rtf = (end - start) / duration

    logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")

    info = f"""
    Wave duration  : {duration: .3f} s <br/>
    Processing time: {end - start: .3f} s <br/>
    RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
    """
    if rtf > 1:
        info += (
            "<br/>We are loading the model for the first run. "
            "Please run again to measure the real RTF.<br/>"
        )

    logging.info(info)
    logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")

    return text, build_html_output(info)


title = "# Automatic Speech Recognition with Next-gen Kaldi"
description = """
This space shows how to do automatic speech recognition with Next-gen Kaldi.

Please visit
<https://huggingface.co/spaces/k2-fsa/streaming-automatic-speech-recognition>
for streaming speech recognition with **Next-gen Kaldi**.

It is running on CPU within a docker container provided by Hugging Face.

See more information by visiting the following links:

- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/sherpa>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>

If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""

# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""


def update_model_dropdown(language: str):
    if language in language_to_models:
        choices = language_to_models[language]
        return gr.Dropdown.update(choices=choices, value=choices[0])

    raise ValueError(f"Unsupported language: {language}")


demo = gr.Blocks(css=css)


with demo:
    gr.Markdown(title)
    language_choices = list(language_to_models.keys())

    language_radio = gr.Radio(
        label="Language",
        choices=language_choices,
        value=language_choices[0],
    )
    model_dropdown = gr.Dropdown(
        choices=language_to_models[language_choices[0]],
        label="Select a model",
        value=language_to_models[language_choices[0]][0],
    )

    language_radio.change(
        update_model_dropdown,
        inputs=language_radio,
        outputs=model_dropdown,
    )

    decoding_method_radio = gr.Radio(
        label="Decoding method",
        choices=["greedy_search", "modified_beam_search"],
        value="greedy_search",
    )

    num_active_paths_slider = gr.Slider(
        minimum=1,
        value=4,
        step=1,
        label="Number of active paths for modified_beam_search",
    )

    with gr.Tabs():
        with gr.TabItem("Upload from disk"):
            uploaded_file = gr.Audio(
                source="upload",  # Choose between "microphone", "upload"
                type="filepath",
                optional=False,
                label="Upload from disk",
            )
            upload_button = gr.Button("Submit for recognition")
            uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
            uploaded_html_info = gr.HTML(label="Info")

            gr.Examples(
                examples=examples,
                inputs=[
                    language_radio,
                    model_dropdown,
                    decoding_method_radio,
                    num_active_paths_slider,
                    uploaded_file,
                ],
                outputs=[uploaded_output, uploaded_html_info],
                fn=process_uploaded_file,
            )

        with gr.TabItem("Record from microphone"):
            microphone = gr.Audio(
                source="microphone",  # Choose between "microphone", "upload"
                type="filepath",
                optional=False,
                label="Record from microphone",
            )

            record_button = gr.Button("Submit for recognition")
            recorded_output = gr.Textbox(label="Recognized speech from recordings")
            recorded_html_info = gr.HTML(label="Info")

            gr.Examples(
                examples=examples,
                inputs=[
                    language_radio,
                    model_dropdown,
                    decoding_method_radio,
                    num_active_paths_slider,
                    microphone,
                ],
                outputs=[recorded_output, recorded_html_info],
                fn=process_microphone,
            )

        upload_button.click(
            process_uploaded_file,
            inputs=[
                language_radio,
                model_dropdown,
                decoding_method_radio,
                num_active_paths_slider,
                uploaded_file,
            ],
            outputs=[uploaded_output, uploaded_html_info],
        )

        record_button.click(
            process_microphone,
            inputs=[
                language_radio,
                model_dropdown,
                decoding_method_radio,
                num_active_paths_slider,
                microphone,
            ],
            outputs=[recorded_output, recorded_html_info],
        )
    gr.Markdown(description)

torch.set_num_threads(1)
torch.set_num_interop_threads(1)

torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_profiling_mode(False)
torch._C._set_graph_executor_optimize(False)

if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)

    demo.launch()