Spaces:
Runtime error
Runtime error
csukuangfj
commited on
Commit
·
ee0d936
1
Parent(s):
08d2e6b
small fixes
Browse files- app.py +12 -19
- giga-tokens.txt +500 -0
- model.py +205 -88
- offline_asr.py +0 -427
app.py
CHANGED
@@ -37,7 +37,7 @@ def convert_to_wav(in_filename: str) -> str:
|
|
37 |
"""Convert the input audio file to a wave file"""
|
38 |
out_filename = in_filename + ".wav"
|
39 |
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
|
40 |
-
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' '{out_filename}'")
|
41 |
return out_filename
|
42 |
|
43 |
|
@@ -128,31 +128,24 @@ def process(
|
|
128 |
logging.info(f"Started at {date_time}")
|
129 |
|
130 |
start = time.time()
|
131 |
-
wave, wave_sample_rate = torchaudio.load(filename)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
f"Expected sample rate: {sample_rate}. Given: {wave_sample_rate}. "
|
136 |
-
f"Resampling to {sample_rate}."
|
137 |
-
)
|
138 |
-
|
139 |
-
wave = torchaudio.functional.resample(
|
140 |
-
wave,
|
141 |
-
orig_freq=wave_sample_rate,
|
142 |
-
new_freq=sample_rate,
|
143 |
-
)
|
144 |
-
wave = wave[0] # use only the first channel.
|
145 |
-
|
146 |
-
hyp = get_pretrained_model(repo_id).decode_waves(
|
147 |
-
[wave],
|
148 |
decoding_method=decoding_method,
|
149 |
num_active_paths=num_active_paths,
|
150 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
153 |
end = time.time()
|
154 |
|
155 |
-
|
|
|
156 |
rtf = (end - start) / duration
|
157 |
|
158 |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
|
|
|
37 |
"""Convert the input audio file to a wave file"""
|
38 |
out_filename = in_filename + ".wav"
|
39 |
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
|
40 |
+
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
|
41 |
return out_filename
|
42 |
|
43 |
|
|
|
128 |
logging.info(f"Started at {date_time}")
|
129 |
|
130 |
start = time.time()
|
|
|
131 |
|
132 |
+
recognizer = get_pretrained_model(
|
133 |
+
repo_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
decoding_method=decoding_method,
|
135 |
num_active_paths=num_active_paths,
|
136 |
+
)
|
137 |
+
s = recognizer.create_stream()
|
138 |
+
|
139 |
+
s.accept_wave_file(filename)
|
140 |
+
recognizer.decode_stream(s)
|
141 |
+
|
142 |
+
logging.info(s.text)
|
143 |
|
144 |
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
145 |
end = time.time()
|
146 |
|
147 |
+
metadata = torchaudio.info(filename)
|
148 |
+
duration = wave.num_frames / sample_rate
|
149 |
rtf = (end - start) / duration
|
150 |
|
151 |
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
|
giga-tokens.txt
ADDED
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<blk> 0
|
2 |
+
<sos/eos> 1
|
3 |
+
<unk> 2
|
4 |
+
S 3
|
5 |
+
T 4
|
6 |
+
▁THE 5
|
7 |
+
▁A 6
|
8 |
+
E 7
|
9 |
+
▁AND 8
|
10 |
+
▁TO 9
|
11 |
+
N 10
|
12 |
+
D 11
|
13 |
+
▁OF 12
|
14 |
+
' 13
|
15 |
+
ING 14
|
16 |
+
▁I 15
|
17 |
+
Y 16
|
18 |
+
▁IN 17
|
19 |
+
ED 18
|
20 |
+
▁THAT 19
|
21 |
+
▁ 20
|
22 |
+
P 21
|
23 |
+
R 22
|
24 |
+
▁YOU 23
|
25 |
+
M 24
|
26 |
+
RE 25
|
27 |
+
ER 26
|
28 |
+
C 27
|
29 |
+
O 28
|
30 |
+
▁IT 29
|
31 |
+
L 30
|
32 |
+
A 31
|
33 |
+
U 32
|
34 |
+
G 33
|
35 |
+
▁WE 34
|
36 |
+
▁IS 35
|
37 |
+
▁SO 36
|
38 |
+
AL 37
|
39 |
+
I 38
|
40 |
+
▁S 39
|
41 |
+
▁RE 40
|
42 |
+
AR 41
|
43 |
+
B 42
|
44 |
+
▁FOR 43
|
45 |
+
▁C 44
|
46 |
+
▁BE 45
|
47 |
+
LE 46
|
48 |
+
F 47
|
49 |
+
W 48
|
50 |
+
▁E 49
|
51 |
+
▁HE 50
|
52 |
+
LL 51
|
53 |
+
▁WAS 52
|
54 |
+
LY 53
|
55 |
+
OR 54
|
56 |
+
IN 55
|
57 |
+
▁F 56
|
58 |
+
VE 57
|
59 |
+
▁THIS 58
|
60 |
+
TH 59
|
61 |
+
K 60
|
62 |
+
▁ON 61
|
63 |
+
IT 62
|
64 |
+
▁B 63
|
65 |
+
▁WITH 64
|
66 |
+
▁BUT 65
|
67 |
+
EN 66
|
68 |
+
CE 67
|
69 |
+
RI 68
|
70 |
+
▁DO 69
|
71 |
+
UR 70
|
72 |
+
▁HAVE 71
|
73 |
+
▁DE 72
|
74 |
+
▁ME 73
|
75 |
+
▁T 74
|
76 |
+
ENT 75
|
77 |
+
CH 76
|
78 |
+
▁THEY 77
|
79 |
+
▁NOT 78
|
80 |
+
ES 79
|
81 |
+
V 80
|
82 |
+
▁AS 81
|
83 |
+
RA 82
|
84 |
+
▁P 83
|
85 |
+
ON 84
|
86 |
+
TER 85
|
87 |
+
▁ARE 86
|
88 |
+
▁WHAT 87
|
89 |
+
IC 88
|
90 |
+
▁ST 89
|
91 |
+
▁LIKE 90
|
92 |
+
ATION 91
|
93 |
+
▁OR 92
|
94 |
+
▁CA 93
|
95 |
+
▁AT 94
|
96 |
+
H 95
|
97 |
+
▁KNOW 96
|
98 |
+
▁G 97
|
99 |
+
AN 98
|
100 |
+
▁CON 99
|
101 |
+
IL 100
|
102 |
+
ND 101
|
103 |
+
RO 102
|
104 |
+
▁HIS 103
|
105 |
+
▁CAN 104
|
106 |
+
▁ALL 105
|
107 |
+
TE 106
|
108 |
+
▁THERE 107
|
109 |
+
▁SU 108
|
110 |
+
▁MO 109
|
111 |
+
▁MA 110
|
112 |
+
LI 111
|
113 |
+
▁ONE 112
|
114 |
+
▁ABOUT 113
|
115 |
+
LA 114
|
116 |
+
▁CO 115
|
117 |
+
- 116
|
118 |
+
▁MY 117
|
119 |
+
▁HAD 118
|
120 |
+
CK 119
|
121 |
+
NG 120
|
122 |
+
▁NO 121
|
123 |
+
MENT 122
|
124 |
+
AD 123
|
125 |
+
LO 124
|
126 |
+
ME 125
|
127 |
+
▁AN 126
|
128 |
+
▁FROM 127
|
129 |
+
NE 128
|
130 |
+
▁IF 129
|
131 |
+
VER 130
|
132 |
+
▁JUST 131
|
133 |
+
▁PRO 132
|
134 |
+
ION 133
|
135 |
+
▁PA 134
|
136 |
+
▁WHO 135
|
137 |
+
▁SE 136
|
138 |
+
EL 137
|
139 |
+
IR 138
|
140 |
+
▁US 139
|
141 |
+
▁UP 140
|
142 |
+
▁YOUR 141
|
143 |
+
CI 142
|
144 |
+
RY 143
|
145 |
+
▁GO 144
|
146 |
+
▁SHE 145
|
147 |
+
▁LE 146
|
148 |
+
▁OUT 147
|
149 |
+
▁PO 148
|
150 |
+
▁HO 149
|
151 |
+
ATE 150
|
152 |
+
▁BO 151
|
153 |
+
▁BY 152
|
154 |
+
▁FA 153
|
155 |
+
▁MI 154
|
156 |
+
AS 155
|
157 |
+
MP 156
|
158 |
+
▁HER 157
|
159 |
+
VI 158
|
160 |
+
▁THINK 159
|
161 |
+
▁SOME 160
|
162 |
+
▁WHEN 161
|
163 |
+
▁AH 162
|
164 |
+
▁PEOPLE 163
|
165 |
+
IG 164
|
166 |
+
▁WA 165
|
167 |
+
▁TE 166
|
168 |
+
▁LA 167
|
169 |
+
▁WERE 168
|
170 |
+
▁LI 169
|
171 |
+
▁WOULD 170
|
172 |
+
▁SEE 171
|
173 |
+
▁WHICH 172
|
174 |
+
DE 173
|
175 |
+
GE 174
|
176 |
+
▁K 175
|
177 |
+
IGHT 176
|
178 |
+
▁HA 177
|
179 |
+
▁OUR 178
|
180 |
+
UN 179
|
181 |
+
▁HOW 180
|
182 |
+
▁GET 181
|
183 |
+
IS 182
|
184 |
+
UT 183
|
185 |
+
Z 184
|
186 |
+
CO 185
|
187 |
+
ET 186
|
188 |
+
UL 187
|
189 |
+
IES 188
|
190 |
+
IVE 189
|
191 |
+
AT 190
|
192 |
+
▁O 191
|
193 |
+
▁DON 192
|
194 |
+
LU 193
|
195 |
+
▁TIME 194
|
196 |
+
▁WILL 195
|
197 |
+
▁MORE 196
|
198 |
+
▁SP 197
|
199 |
+
▁NOW 198
|
200 |
+
RU 199
|
201 |
+
▁THEIR 200
|
202 |
+
▁UN 201
|
203 |
+
ITY 202
|
204 |
+
OL 203
|
205 |
+
X 204
|
206 |
+
TI 205
|
207 |
+
US 206
|
208 |
+
▁VERY 207
|
209 |
+
TION 208
|
210 |
+
▁FI 209
|
211 |
+
▁SAY 210
|
212 |
+
▁BECAUSE 211
|
213 |
+
▁EX 212
|
214 |
+
▁RO 213
|
215 |
+
ERS 214
|
216 |
+
IST 215
|
217 |
+
▁DA 216
|
218 |
+
TING 217
|
219 |
+
▁EN 218
|
220 |
+
OM 219
|
221 |
+
▁BA 220
|
222 |
+
▁BEEN 221
|
223 |
+
▁LO 222
|
224 |
+
▁UM 223
|
225 |
+
AGE 224
|
226 |
+
ABLE 225
|
227 |
+
▁WO 226
|
228 |
+
▁RA 227
|
229 |
+
▁OTHER 228
|
230 |
+
▁REALLY 229
|
231 |
+
ENCE 230
|
232 |
+
▁GOING 231
|
233 |
+
▁HIM 232
|
234 |
+
▁HAS 233
|
235 |
+
▁THEM 234
|
236 |
+
▁DIS 235
|
237 |
+
▁WANT 236
|
238 |
+
ID 237
|
239 |
+
TA 238
|
240 |
+
▁LOOK 239
|
241 |
+
KE 240
|
242 |
+
▁DID 241
|
243 |
+
▁SA 242
|
244 |
+
▁VI 243
|
245 |
+
▁SAID 244
|
246 |
+
▁RIGHT 245
|
247 |
+
▁THESE 246
|
248 |
+
▁WORK 247
|
249 |
+
▁COM 248
|
250 |
+
ALLY 249
|
251 |
+
FF 250
|
252 |
+
QU 251
|
253 |
+
AC 252
|
254 |
+
▁DR 253
|
255 |
+
▁WAY 254
|
256 |
+
▁INTO 255
|
257 |
+
MO 256
|
258 |
+
TED 257
|
259 |
+
EST 258
|
260 |
+
▁HERE 259
|
261 |
+
OK 260
|
262 |
+
▁COULD 261
|
263 |
+
▁WELL 262
|
264 |
+
MA 263
|
265 |
+
▁PRE 264
|
266 |
+
▁DI 265
|
267 |
+
MAN 266
|
268 |
+
▁COMP 267
|
269 |
+
▁THEN 268
|
270 |
+
IM 269
|
271 |
+
▁PER 270
|
272 |
+
▁NA 271
|
273 |
+
▁WHERE 272
|
274 |
+
▁TWO 273
|
275 |
+
▁WI 274
|
276 |
+
▁FE 275
|
277 |
+
INE 276
|
278 |
+
▁ANY 277
|
279 |
+
TURE 278
|
280 |
+
▁OVER 279
|
281 |
+
BO 280
|
282 |
+
ACH 281
|
283 |
+
OW 282
|
284 |
+
▁MAKE 283
|
285 |
+
▁TRA 284
|
286 |
+
HE 285
|
287 |
+
UND 286
|
288 |
+
▁EVEN 287
|
289 |
+
ANCE 288
|
290 |
+
▁YEAR 289
|
291 |
+
HO 290
|
292 |
+
AM 291
|
293 |
+
▁CHA 292
|
294 |
+
▁BACK 293
|
295 |
+
VO 294
|
296 |
+
ANT 295
|
297 |
+
DI 296
|
298 |
+
▁ALSO 297
|
299 |
+
▁THOSE 298
|
300 |
+
▁MAN 299
|
301 |
+
CTION 300
|
302 |
+
ICAL 301
|
303 |
+
▁JO 302
|
304 |
+
▁OP 303
|
305 |
+
▁NEW 304
|
306 |
+
▁MU 305
|
307 |
+
▁HU 306
|
308 |
+
▁KIND 307
|
309 |
+
▁NE 308
|
310 |
+
CA 309
|
311 |
+
END 310
|
312 |
+
TIC 311
|
313 |
+
FUL 312
|
314 |
+
▁YEAH 313
|
315 |
+
SH 314
|
316 |
+
▁APP 315
|
317 |
+
▁THINGS 316
|
318 |
+
SIDE 317
|
319 |
+
▁GOOD 318
|
320 |
+
ONE 319
|
321 |
+
▁TAKE 320
|
322 |
+
CU 321
|
323 |
+
▁EVERY 322
|
324 |
+
▁MEAN 323
|
325 |
+
▁FIRST 324
|
326 |
+
OP 325
|
327 |
+
▁TH 326
|
328 |
+
▁MUCH 327
|
329 |
+
▁PART 328
|
330 |
+
UGH 329
|
331 |
+
▁COME 330
|
332 |
+
J 331
|
333 |
+
▁THAN 332
|
334 |
+
▁EXP 333
|
335 |
+
▁AGAIN 334
|
336 |
+
▁LITTLE 335
|
337 |
+
MB 336
|
338 |
+
▁NEED 337
|
339 |
+
▁TALK 338
|
340 |
+
IF 339
|
341 |
+
FOR 340
|
342 |
+
▁SH 341
|
343 |
+
ISH 342
|
344 |
+
▁STA 343
|
345 |
+
ATED 344
|
346 |
+
▁GU 345
|
347 |
+
▁LET 346
|
348 |
+
IA 347
|
349 |
+
▁MAR 348
|
350 |
+
▁DOWN 349
|
351 |
+
▁DAY 350
|
352 |
+
▁GA 351
|
353 |
+
▁SOMETHING 352
|
354 |
+
▁BU 353
|
355 |
+
DUC 354
|
356 |
+
HA 355
|
357 |
+
▁LOT 356
|
358 |
+
▁RU 357
|
359 |
+
▁THOUGH 358
|
360 |
+
▁GREAT 359
|
361 |
+
AIN 360
|
362 |
+
▁THROUGH 361
|
363 |
+
▁THING 362
|
364 |
+
OUS 363
|
365 |
+
▁PRI 364
|
366 |
+
▁GOT 365
|
367 |
+
▁SHOULD 366
|
368 |
+
▁AFTER 367
|
369 |
+
▁HEAR 368
|
370 |
+
▁TA 369
|
371 |
+
▁ONLY 370
|
372 |
+
▁CHI 371
|
373 |
+
IOUS 372
|
374 |
+
▁SHA 373
|
375 |
+
▁MOST 374
|
376 |
+
▁ACTUALLY 375
|
377 |
+
▁START 376
|
378 |
+
LIC 377
|
379 |
+
▁VA 378
|
380 |
+
▁RI 379
|
381 |
+
DAY 380
|
382 |
+
IAN 381
|
383 |
+
▁DOES 382
|
384 |
+
ROW 383
|
385 |
+
▁GRA 384
|
386 |
+
ITION 385
|
387 |
+
▁MANY 386
|
388 |
+
▁BEFORE 387
|
389 |
+
▁GIVE 388
|
390 |
+
PORT 389
|
391 |
+
QUI 390
|
392 |
+
▁LIFE 391
|
393 |
+
▁WORLD 392
|
394 |
+
▁PI 393
|
395 |
+
▁LONG 394
|
396 |
+
▁THREE 395
|
397 |
+
IZE 396
|
398 |
+
NESS 397
|
399 |
+
▁SHOW 398
|
400 |
+
PH 399
|
401 |
+
▁WHY 400
|
402 |
+
▁QUESTION 401
|
403 |
+
WARD 402
|
404 |
+
▁THANK 403
|
405 |
+
▁PH 404
|
406 |
+
▁DIFFERENT 405
|
407 |
+
▁OWN 406
|
408 |
+
▁FEEL 407
|
409 |
+
▁MIGHT 408
|
410 |
+
▁HAPPEN 409
|
411 |
+
▁MADE 410
|
412 |
+
▁BRO 411
|
413 |
+
IBLE 412
|
414 |
+
▁HI 413
|
415 |
+
▁STATE 414
|
416 |
+
▁HAND 415
|
417 |
+
▁NEVER 416
|
418 |
+
▁PLACE 417
|
419 |
+
▁LOVE 418
|
420 |
+
▁DU 419
|
421 |
+
▁POINT 420
|
422 |
+
▁HELP 421
|
423 |
+
▁COUNT 422
|
424 |
+
▁STILL 423
|
425 |
+
▁MR 424
|
426 |
+
▁FIND 425
|
427 |
+
▁PERSON 426
|
428 |
+
▁CAME 427
|
429 |
+
▁SAME 428
|
430 |
+
▁LAST 429
|
431 |
+
▁HIGH 430
|
432 |
+
▁OLD 431
|
433 |
+
▁UNDER 432
|
434 |
+
▁FOUR 433
|
435 |
+
▁AROUND 434
|
436 |
+
▁SORT 435
|
437 |
+
▁CHANGE 436
|
438 |
+
▁YES 437
|
439 |
+
SHIP 438
|
440 |
+
▁ANOTHER 439
|
441 |
+
ATIVE 440
|
442 |
+
▁FOUND 441
|
443 |
+
▁JA 442
|
444 |
+
▁ALWAYS 443
|
445 |
+
▁NEXT 444
|
446 |
+
▁TURN 445
|
447 |
+
▁JU 446
|
448 |
+
▁SIX 447
|
449 |
+
▁FACT 448
|
450 |
+
▁INTEREST 449
|
451 |
+
▁WORD 450
|
452 |
+
▁THOUSAND 451
|
453 |
+
▁HUNDRED 452
|
454 |
+
▁NUMBER 453
|
455 |
+
▁IDEA 454
|
456 |
+
▁PLAN 455
|
457 |
+
▁COURSE 456
|
458 |
+
▁SCHOOL 457
|
459 |
+
▁HOUSE 458
|
460 |
+
▁TWENTY 459
|
461 |
+
▁JE 460
|
462 |
+
▁PLAY 461
|
463 |
+
▁AWAY 462
|
464 |
+
▁LEARN 463
|
465 |
+
▁HARD 464
|
466 |
+
▁WEEK 465
|
467 |
+
▁BETTER 466
|
468 |
+
▁WHILE 467
|
469 |
+
▁FRIEND 468
|
470 |
+
▁OKAY 469
|
471 |
+
▁NINE 470
|
472 |
+
▁UNDERSTAND 471
|
473 |
+
▁KEEP 472
|
474 |
+
▁GONNA 473
|
475 |
+
▁SYSTEM 474
|
476 |
+
▁AMERICA 475
|
477 |
+
▁POWER 476
|
478 |
+
▁IMPORTANT 477
|
479 |
+
▁WITHOUT 478
|
480 |
+
▁MAYBE 479
|
481 |
+
▁SEVEN 480
|
482 |
+
▁BETWEEN 481
|
483 |
+
▁BUILD 482
|
484 |
+
▁CERTAIN 483
|
485 |
+
▁PROBLEM 484
|
486 |
+
▁MONEY 485
|
487 |
+
▁BELIEVE 486
|
488 |
+
▁SECOND 487
|
489 |
+
▁REASON 488
|
490 |
+
▁TOGETHER 489
|
491 |
+
▁PUBLIC 490
|
492 |
+
▁ANYTHING 491
|
493 |
+
▁SPEAK 492
|
494 |
+
▁BUSINESS 493
|
495 |
+
▁EVERYTHING 494
|
496 |
+
▁CLOSE 495
|
497 |
+
▁QUITE 496
|
498 |
+
▁ANSWER 497
|
499 |
+
▁ENOUGH 498
|
500 |
+
Q 499
|
model.py
CHANGED
@@ -16,23 +16,35 @@
|
|
16 |
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from functools import lru_cache
|
|
|
19 |
|
20 |
|
21 |
-
from offline_asr import OfflineAsr
|
22 |
-
|
23 |
sample_rate = 16000
|
24 |
|
25 |
|
26 |
@lru_cache(maxsize=30)
|
27 |
-
def get_pretrained_model(
|
|
|
|
|
|
|
|
|
28 |
if repo_id in chinese_models:
|
29 |
-
return chinese_models[repo_id](
|
|
|
|
|
30 |
elif repo_id in english_models:
|
31 |
-
return english_models[repo_id](
|
|
|
|
|
32 |
elif repo_id in chinese_english_mixed_models:
|
33 |
-
return chinese_english_mixed_models[repo_id](
|
|
|
|
|
34 |
elif repo_id in tibetan_models:
|
35 |
return tibetan_models[repo_id](repo_id)
|
|
|
|
|
|
|
36 |
else:
|
37 |
raise ValueError(f"Unsupported repo_id: {repo_id}")
|
38 |
|
@@ -77,7 +89,11 @@ def _get_token_filename(
|
|
77 |
|
78 |
|
79 |
@lru_cache(maxsize=10)
|
80 |
-
def _get_aishell2_pretrained_model(
|
|
|
|
|
|
|
|
|
81 |
assert repo_id in [
|
82 |
# context-size 1
|
83 |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
|
@@ -85,44 +101,68 @@ def _get_aishell2_pretrained_model(repo_id: str) -> OfflineAsr:
|
|
85 |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
|
86 |
], repo_id
|
87 |
|
88 |
-
|
89 |
repo_id=repo_id,
|
90 |
filename="cpu_jit.pt",
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
)
|
101 |
|
|
|
|
|
|
|
|
|
102 |
|
103 |
@lru_cache(maxsize=10)
|
104 |
-
def _get_gigaspeech_pre_trained_model(
|
|
|
|
|
|
|
|
|
105 |
assert repo_id in [
|
106 |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
|
107 |
], repo_id
|
108 |
|
109 |
-
|
110 |
repo_id=repo_id,
|
111 |
filename="cpu_jit-iter-3488000-avg-20.pt",
|
112 |
)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
|
123 |
|
124 |
@lru_cache(maxsize=10)
|
125 |
-
def _get_librispeech_pre_trained_model(
|
|
|
|
|
|
|
|
|
126 |
assert repo_id in [
|
127 |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa
|
128 |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
|
@@ -143,107 +183,172 @@ def _get_librispeech_pre_trained_model(repo_id: str) -> OfflineAsr:
|
|
143 |
):
|
144 |
filename = "cpu_jit-torch-1.10.pt"
|
145 |
|
146 |
-
|
147 |
repo_id=repo_id,
|
148 |
filename=filename,
|
149 |
)
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
)
|
159 |
|
|
|
|
|
|
|
|
|
160 |
|
161 |
@lru_cache(maxsize=10)
|
162 |
-
def _get_wenetspeech_pre_trained_model(
|
|
|
|
|
|
|
|
|
163 |
assert repo_id in [
|
164 |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
165 |
], repo_id
|
166 |
|
167 |
-
|
168 |
repo_id=repo_id,
|
169 |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
170 |
)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
|
|
|
|
|
|
|
|
|
181 |
|
182 |
@lru_cache(maxsize=10)
|
183 |
-
def _get_tal_csasr_pre_trained_model(
|
|
|
|
|
|
|
|
|
184 |
assert repo_id in [
|
185 |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
|
186 |
], repo_id
|
187 |
|
188 |
-
|
189 |
repo_id=repo_id,
|
190 |
filename="cpu_jit.pt",
|
191 |
)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
)
|
201 |
|
|
|
|
|
|
|
|
|
202 |
|
203 |
@lru_cache(maxsize=10)
|
204 |
-
def _get_alimeeting_pre_trained_model(
|
|
|
|
|
|
|
|
|
205 |
assert repo_id in [
|
206 |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2",
|
207 |
], repo_id
|
208 |
|
209 |
-
|
210 |
repo_id=repo_id,
|
211 |
filename="cpu_jit_torch_1.7.1.pt",
|
212 |
)
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
)
|
222 |
|
|
|
|
|
|
|
|
|
223 |
|
224 |
@lru_cache(maxsize=10)
|
225 |
-
def _get_aidatatang_200zh_pretrained_mode(
|
|
|
|
|
|
|
|
|
226 |
assert repo_id in [
|
227 |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2",
|
228 |
], repo_id
|
229 |
|
230 |
-
|
231 |
repo_id=repo_id,
|
232 |
filename="cpu_jit_torch.1.7.1.pt",
|
233 |
)
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
)
|
243 |
|
|
|
|
|
|
|
|
|
244 |
|
245 |
@lru_cache(maxsize=10)
|
246 |
-
def _get_tibetan_pre_trained_model(
|
|
|
|
|
|
|
|
|
247 |
assert repo_id in [
|
248 |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02",
|
249 |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29",
|
@@ -254,21 +359,33 @@ def _get_tibetan_pre_trained_model(repo_id: str):
|
|
254 |
repo_id
|
255 |
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29"
|
256 |
):
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
270 |
)
|
271 |
|
|
|
|
|
|
|
|
|
272 |
|
273 |
chinese_models = {
|
274 |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
|
|
|
16 |
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from functools import lru_cache
|
19 |
+
import sherpa
|
20 |
|
21 |
|
|
|
|
|
22 |
sample_rate = 16000
|
23 |
|
24 |
|
25 |
@lru_cache(maxsize=30)
|
26 |
+
def get_pretrained_model(
|
27 |
+
repo_id: str,
|
28 |
+
decoding_method: str,
|
29 |
+
num_active_paths: int,
|
30 |
+
) -> sherpa.OfflineRecognizer:
|
31 |
if repo_id in chinese_models:
|
32 |
+
return chinese_models[repo_id](
|
33 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
34 |
+
)
|
35 |
elif repo_id in english_models:
|
36 |
+
return english_models[repo_id](
|
37 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
38 |
+
)
|
39 |
elif repo_id in chinese_english_mixed_models:
|
40 |
+
return chinese_english_mixed_models[repo_id](
|
41 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
42 |
+
)
|
43 |
elif repo_id in tibetan_models:
|
44 |
return tibetan_models[repo_id](repo_id)
|
45 |
+
return tibetan_models[repo_id](
|
46 |
+
repo_id, decoding_method=decoding_method, num_active_paths=num_active_paths
|
47 |
+
)
|
48 |
else:
|
49 |
raise ValueError(f"Unsupported repo_id: {repo_id}")
|
50 |
|
|
|
89 |
|
90 |
|
91 |
@lru_cache(maxsize=10)
|
92 |
+
def _get_aishell2_pretrained_model(
|
93 |
+
repo_id: str,
|
94 |
+
decoding_method: str,
|
95 |
+
num_active_paths: int,
|
96 |
+
) -> sherpa.OfflineRecognizer:
|
97 |
assert repo_id in [
|
98 |
# context-size 1
|
99 |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-A-2022-07-12", # noqa
|
|
|
101 |
"yuekai/icefall-asr-aishell2-pruned-transducer-stateless5-B-2022-07-12", # noqa
|
102 |
], repo_id
|
103 |
|
104 |
+
nn_model = _get_nn_model_filename(
|
105 |
repo_id=repo_id,
|
106 |
filename="cpu_jit.pt",
|
107 |
)
|
108 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
109 |
+
|
110 |
+
feat_config = sherpa.FeatureConfig()
|
111 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
112 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
113 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
114 |
+
|
115 |
+
config = sherpa.OfflineRecognizerConfig(
|
116 |
+
nn_model=nn_model,
|
117 |
+
tokens=tokens,
|
118 |
+
use_gpu=False,
|
119 |
+
feat_config=feat_config,
|
120 |
+
decoding_method=decoding_method,
|
121 |
+
num_active_paths=num_active_paths,
|
122 |
)
|
123 |
|
124 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
125 |
+
|
126 |
+
return recognizer
|
127 |
+
|
128 |
|
129 |
@lru_cache(maxsize=10)
|
130 |
+
def _get_gigaspeech_pre_trained_model(
|
131 |
+
repo_id: str,
|
132 |
+
decoding_method: str,
|
133 |
+
num_active_paths: int,
|
134 |
+
) -> sherpa.OfflineRecognizer:
|
135 |
assert repo_id in [
|
136 |
"wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2",
|
137 |
], repo_id
|
138 |
|
139 |
+
nn_model = _get_nn_model_filename(
|
140 |
repo_id=repo_id,
|
141 |
filename="cpu_jit-iter-3488000-avg-20.pt",
|
142 |
)
|
143 |
+
tokens = "./giga-tokens.txt"
|
144 |
+
|
145 |
+
feat_config = sherpa.FeatureConfig()
|
146 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
147 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
148 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
149 |
+
|
150 |
+
config = sherpa.OfflineRecognizerConfig(
|
151 |
+
nn_model=nn_model,
|
152 |
+
tokens=tokens,
|
153 |
+
use_gpu=False,
|
154 |
+
feat_config=feat_config,
|
155 |
+
decoding_method=decoding_method,
|
156 |
+
num_active_paths=num_active_paths,
|
157 |
)
|
158 |
|
159 |
|
160 |
@lru_cache(maxsize=10)
|
161 |
+
def _get_librispeech_pre_trained_model(
|
162 |
+
repo_id: str,
|
163 |
+
decoding_method: str,
|
164 |
+
num_active_paths: int,
|
165 |
+
) -> sherpa.OfflineRecognizer:
|
166 |
assert repo_id in [
|
167 |
"WeijiZhuang/icefall-asr-librispeech-pruned-transducer-stateless8-2022-12-02", # noqa
|
168 |
"csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13", # noqa
|
|
|
183 |
):
|
184 |
filename = "cpu_jit-torch-1.10.pt"
|
185 |
|
186 |
+
nn_model = _get_nn_model_filename(
|
187 |
repo_id=repo_id,
|
188 |
filename=filename,
|
189 |
)
|
190 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500")
|
191 |
+
|
192 |
+
config = sherpa.OfflineRecognizerConfig(
|
193 |
+
nn_model=nn_model,
|
194 |
+
tokens=tokens,
|
195 |
+
use_gpu=False,
|
196 |
+
feat_config=feat_config,
|
197 |
+
decoding_method=decoding_method,
|
198 |
+
num_active_paths=num_active_paths,
|
199 |
)
|
200 |
|
201 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
202 |
+
|
203 |
+
return recognizer
|
204 |
+
|
205 |
|
206 |
@lru_cache(maxsize=10)
|
207 |
+
def _get_wenetspeech_pre_trained_model(
|
208 |
+
repo_id: str,
|
209 |
+
decoding_method: str,
|
210 |
+
num_active_paths: int,
|
211 |
+
):
|
212 |
assert repo_id in [
|
213 |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2",
|
214 |
], repo_id
|
215 |
|
216 |
+
nn_model = _get_nn_model_filename(
|
217 |
repo_id=repo_id,
|
218 |
filename="cpu_jit_epoch_10_avg_2_torch_1.7.1.pt",
|
219 |
)
|
220 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
221 |
+
|
222 |
+
feat_config = sherpa.FeatureConfig()
|
223 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
224 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
225 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
226 |
+
|
227 |
+
config = sherpa.OfflineRecognizerConfig(
|
228 |
+
nn_model=nn_model,
|
229 |
+
tokens=tokens,
|
230 |
+
use_gpu=False,
|
231 |
+
feat_config=feat_config,
|
232 |
+
decoding_method=decoding_method,
|
233 |
+
num_active_paths=num_active_paths,
|
234 |
)
|
235 |
|
236 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
237 |
+
|
238 |
+
return recognizer
|
239 |
+
|
240 |
|
241 |
@lru_cache(maxsize=10)
|
242 |
+
def _get_tal_csasr_pre_trained_model(
|
243 |
+
repo_id: str,
|
244 |
+
decoding_method: str,
|
245 |
+
num_active_paths: int,
|
246 |
+
):
|
247 |
assert repo_id in [
|
248 |
"luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5",
|
249 |
], repo_id
|
250 |
|
251 |
+
nn_model = _get_nn_model_filename(
|
252 |
repo_id=repo_id,
|
253 |
filename="cpu_jit.pt",
|
254 |
)
|
255 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
256 |
+
|
257 |
+
feat_config = sherpa.FeatureConfig()
|
258 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
259 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
260 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
261 |
+
|
262 |
+
config = sherpa.OfflineRecognizerConfig(
|
263 |
+
nn_model=nn_model,
|
264 |
+
tokens=tokens,
|
265 |
+
use_gpu=False,
|
266 |
+
feat_config=feat_config,
|
267 |
+
decoding_method=decoding_method,
|
268 |
+
num_active_paths=num_active_paths,
|
269 |
)
|
270 |
|
271 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
272 |
+
|
273 |
+
return recognizer
|
274 |
+
|
275 |
|
276 |
@lru_cache(maxsize=10)
|
277 |
+
def _get_alimeeting_pre_trained_model(
|
278 |
+
repo_id: str,
|
279 |
+
decoding_method: str,
|
280 |
+
num_active_paths: int,
|
281 |
+
):
|
282 |
assert repo_id in [
|
283 |
"luomingshuang/icefall_asr_alimeeting_pruned_transducer_stateless2",
|
284 |
], repo_id
|
285 |
|
286 |
+
nn_model = _get_nn_model_filename(
|
287 |
repo_id=repo_id,
|
288 |
filename="cpu_jit_torch_1.7.1.pt",
|
289 |
)
|
290 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
291 |
+
|
292 |
+
feat_config = sherpa.FeatureConfig()
|
293 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
294 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
295 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
296 |
+
|
297 |
+
config = sherpa.OfflineRecognizerConfig(
|
298 |
+
nn_model=nn_model,
|
299 |
+
tokens=tokens,
|
300 |
+
use_gpu=False,
|
301 |
+
feat_config=feat_config,
|
302 |
+
decoding_method=decoding_method,
|
303 |
+
num_active_paths=num_active_paths,
|
304 |
)
|
305 |
|
306 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
307 |
+
|
308 |
+
return recognizer
|
309 |
+
|
310 |
|
311 |
@lru_cache(maxsize=10)
|
312 |
+
def _get_aidatatang_200zh_pretrained_mode(
|
313 |
+
repo_id: str,
|
314 |
+
decoding_method: str,
|
315 |
+
num_active_paths: int,
|
316 |
+
):
|
317 |
assert repo_id in [
|
318 |
"luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2",
|
319 |
], repo_id
|
320 |
|
321 |
+
nn_model = _get_nn_model_filename(
|
322 |
repo_id=repo_id,
|
323 |
filename="cpu_jit_torch.1.7.1.pt",
|
324 |
)
|
325 |
+
tokens = _get_token_filename(repo_id=repo_id)
|
326 |
+
|
327 |
+
feat_config = sherpa.FeatureConfig()
|
328 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
329 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
330 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
331 |
+
|
332 |
+
config = sherpa.OfflineRecognizerConfig(
|
333 |
+
nn_model=nn_model,
|
334 |
+
tokens=tokens,
|
335 |
+
use_gpu=False,
|
336 |
+
feat_config=feat_config,
|
337 |
+
decoding_method=decoding_method,
|
338 |
+
num_active_paths=num_active_paths,
|
339 |
)
|
340 |
|
341 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
342 |
+
|
343 |
+
return recognizer
|
344 |
+
|
345 |
|
346 |
@lru_cache(maxsize=10)
|
347 |
+
def _get_tibetan_pre_trained_model(
|
348 |
+
repo_id: str,
|
349 |
+
decoding_method: str,
|
350 |
+
num_active_paths: int,
|
351 |
+
):
|
352 |
assert repo_id in [
|
353 |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless7-2022-12-02",
|
354 |
"syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29",
|
|
|
359 |
repo_id
|
360 |
== "syzym/icefall-asr-xbmu-amdo31-pruned-transducer-stateless5-2022-11-29"
|
361 |
):
|
362 |
+
filename = ("cpu_jit-epoch-28-avg-23-torch-1.10.0.pt",)
|
363 |
+
|
364 |
+
nn_model = _get_nn_model_filename(
|
365 |
+
repo_id=repo_id,
|
366 |
+
filename=filename,
|
367 |
+
)
|
368 |
+
|
369 |
+
tokens = _get_token_filename(repo_id=repo_id, subfolder="data/lang_bpe_500")
|
370 |
|
371 |
+
feat_config = sherpa.FeatureConfig()
|
372 |
+
feat_config.fbank_opts.frame_opts.samp_freq = sample_rate
|
373 |
+
feat_config.fbank_opts.mel_opts.num_bins = 80
|
374 |
+
feat_config.fbank_opts.frame_opts.dither = 0
|
375 |
|
376 |
+
config = sherpa.OfflineRecognizerConfig(
|
377 |
+
nn_model=nn_model,
|
378 |
+
tokens=tokens,
|
379 |
+
use_gpu=False,
|
380 |
+
feat_config=feat_config,
|
381 |
+
decoding_method=decoding_method,
|
382 |
+
num_active_paths=num_active_paths,
|
383 |
)
|
384 |
|
385 |
+
recognizer = sherpa.OfflineRecognizer(config)
|
386 |
+
|
387 |
+
return recognizer
|
388 |
+
|
389 |
|
390 |
chinese_models = {
|
391 |
"luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2": _get_wenetspeech_pre_trained_model, # noqa
|
offline_asr.py
DELETED
@@ -1,427 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
3 |
-
#
|
4 |
-
# Copied from https://github.com/k2-fsa/sherpa/blob/master/sherpa/bin/conformer_rnnt/offline_asr.py
|
5 |
-
#
|
6 |
-
# See LICENSE for clarification regarding multiple authors
|
7 |
-
#
|
8 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
-
# you may not use this file except in compliance with the License.
|
10 |
-
# You may obtain a copy of the License at
|
11 |
-
#
|
12 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
-
#
|
14 |
-
# Unless required by applicable law or agreed to in writing, software
|
15 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
-
# See the License for the specific language governing permissions and
|
18 |
-
# limitations under the License.
|
19 |
-
"""
|
20 |
-
A standalone script for offline ASR recognition.
|
21 |
-
|
22 |
-
It loads a torchscript model, decodes the given wav files, and exits.
|
23 |
-
|
24 |
-
Usage:
|
25 |
-
./offline_asr.py --help
|
26 |
-
|
27 |
-
For BPE based models (e.g., LibriSpeech):
|
28 |
-
|
29 |
-
./offline_asr.py \
|
30 |
-
--nn-model-filename /path/to/cpu_jit.pt \
|
31 |
-
--bpe-model-filename /path/to/bpe.model \
|
32 |
-
--decoding-method greedy_search \
|
33 |
-
./foo.wav \
|
34 |
-
./bar.wav \
|
35 |
-
./foobar.wav
|
36 |
-
|
37 |
-
For character based models (e.g., aishell):
|
38 |
-
|
39 |
-
./offline.py \
|
40 |
-
--nn-model-filename /path/to/cpu_jit.pt \
|
41 |
-
--token-filename /path/to/lang_char/tokens.txt \
|
42 |
-
--decoding-method greedy_search \
|
43 |
-
./foo.wav \
|
44 |
-
./bar.wav \
|
45 |
-
./foobar.wav
|
46 |
-
|
47 |
-
Note: We provide pre-trained models for testing.
|
48 |
-
|
49 |
-
(1) Pre-trained model with the LibriSpeech dataset
|
50 |
-
|
51 |
-
sudo apt-get install git-lfs
|
52 |
-
git lfs install
|
53 |
-
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13
|
54 |
-
|
55 |
-
nn_model_filename=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/exp/cpu_jit-torch-1.6.0.pt
|
56 |
-
bpe_model=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/data/lang_bpe_500/bpe.model
|
57 |
-
|
58 |
-
wav1=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1089-134686-0001.wav
|
59 |
-
wav2=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0001.wav
|
60 |
-
wav3=./icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13/test_wavs/1221-135766-0002.wav
|
61 |
-
|
62 |
-
sherpa/bin/conformer_rnnt/offline_asr.py \
|
63 |
-
--nn-model-filename $nn_model_filename \
|
64 |
-
--bpe-model $bpe_model \
|
65 |
-
$wav1 \
|
66 |
-
$wav2 \
|
67 |
-
$wav3
|
68 |
-
|
69 |
-
(2) Pre-trained model with the aishell dataset
|
70 |
-
|
71 |
-
sudo apt-get install git-lfs
|
72 |
-
git lfs install
|
73 |
-
git clone https://huggingface.co/csukuangfj/icefall-aishell-pruned-transducer-stateless3-2022-06-20
|
74 |
-
|
75 |
-
nn_model_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/exp/cpu_jit-epoch-29-avg-5-torch-1.6.0.pt
|
76 |
-
token_filename=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/data/lang_char/tokens.txt
|
77 |
-
|
78 |
-
wav1=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0121.wav
|
79 |
-
wav2=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0122.wav
|
80 |
-
wav3=./icefall-aishell-pruned-transducer-stateless3-2022-06-20/test_wavs/BAC009S0764W0123.wav
|
81 |
-
|
82 |
-
sherpa/bin/conformer_rnnt/offline_asr.py \
|
83 |
-
--nn-model-filename $nn_model_filename \
|
84 |
-
--token-filename $token_filename \
|
85 |
-
$wav1 \
|
86 |
-
$wav2 \
|
87 |
-
$wav3
|
88 |
-
"""
|
89 |
-
import argparse
|
90 |
-
import functools
|
91 |
-
import logging
|
92 |
-
from typing import List, Optional, Union
|
93 |
-
|
94 |
-
import k2
|
95 |
-
import kaldifeat
|
96 |
-
import sentencepiece as spm
|
97 |
-
import torch
|
98 |
-
import torchaudio
|
99 |
-
from sherpa import RnntConformerModel
|
100 |
-
|
101 |
-
from decode import run_model_and_do_greedy_search, run_model_and_do_modified_beam_search
|
102 |
-
|
103 |
-
|
104 |
-
def get_args():
|
105 |
-
parser = argparse.ArgumentParser(
|
106 |
-
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
107 |
-
)
|
108 |
-
|
109 |
-
parser.add_argument(
|
110 |
-
"--nn-model-filename",
|
111 |
-
type=str,
|
112 |
-
help="""The torchscript model. You can use
|
113 |
-
icefall/egs/librispeech/ASR/pruned_transducer_statelessX/export.py \
|
114 |
-
--jit=1
|
115 |
-
to generate this model.
|
116 |
-
""",
|
117 |
-
)
|
118 |
-
|
119 |
-
parser.add_argument(
|
120 |
-
"--bpe-model-filename",
|
121 |
-
type=str,
|
122 |
-
help="""The BPE model
|
123 |
-
You can find it in the directory egs/librispeech/ASR/data/lang_bpe_xxx
|
124 |
-
from icefall,
|
125 |
-
where xxx is the number of BPE tokens you used to train the model.
|
126 |
-
Note: Use it only when your model is using BPE. You don't need to
|
127 |
-
provide it if you provide `--token-filename`
|
128 |
-
""",
|
129 |
-
)
|
130 |
-
|
131 |
-
parser.add_argument(
|
132 |
-
"--token-filename",
|
133 |
-
type=str,
|
134 |
-
help="""Filename for tokens.txt
|
135 |
-
You can find it in the directory
|
136 |
-
egs/aishell/ASR/data/lang_char/tokens.txt from icefall.
|
137 |
-
Note: You don't need to provide it if you provide `--bpe-model`
|
138 |
-
""",
|
139 |
-
)
|
140 |
-
|
141 |
-
parser.add_argument(
|
142 |
-
"--decoding-method",
|
143 |
-
type=str,
|
144 |
-
default="greedy_search",
|
145 |
-
help="""Decoding method to use. Currently, only greedy_search and
|
146 |
-
modified_beam_search are implemented.
|
147 |
-
""",
|
148 |
-
)
|
149 |
-
|
150 |
-
parser.add_argument(
|
151 |
-
"--num-active-paths",
|
152 |
-
type=int,
|
153 |
-
default=4,
|
154 |
-
help="""Used only when decoding_method is modified_beam_search.
|
155 |
-
It specifies number of active paths for each utterance. Due to
|
156 |
-
merging paths with identical token sequences, the actual number
|
157 |
-
may be less than "num_active_paths".
|
158 |
-
""",
|
159 |
-
)
|
160 |
-
|
161 |
-
parser.add_argument(
|
162 |
-
"--sample-rate",
|
163 |
-
type=int,
|
164 |
-
default=16000,
|
165 |
-
help="The expected sample rate of the input sound files",
|
166 |
-
)
|
167 |
-
|
168 |
-
parser.add_argument(
|
169 |
-
"sound_files",
|
170 |
-
type=str,
|
171 |
-
nargs="+",
|
172 |
-
help="The input sound file(s) to transcribe. "
|
173 |
-
"Supported formats are those supported by torchaudio.load(). "
|
174 |
-
"For example, wav and flac are supported. "
|
175 |
-
"The sample rate has to equal to `--sample-rate`.",
|
176 |
-
)
|
177 |
-
|
178 |
-
return parser.parse_args()
|
179 |
-
|
180 |
-
|
181 |
-
def read_sound_files(
|
182 |
-
filenames: List[str],
|
183 |
-
expected_sample_rate: int,
|
184 |
-
) -> List[torch.Tensor]:
|
185 |
-
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
186 |
-
Args:
|
187 |
-
filenames:
|
188 |
-
A list of sound filenames.
|
189 |
-
expected_sample_rate:
|
190 |
-
The expected sample rate of the sound files.
|
191 |
-
Returns:
|
192 |
-
Return a list of 1-D float32 torch tensors.
|
193 |
-
"""
|
194 |
-
ans = []
|
195 |
-
for f in filenames:
|
196 |
-
wave, sample_rate = torchaudio.load(f)
|
197 |
-
assert sample_rate == expected_sample_rate, (
|
198 |
-
f"expected sample rate: {expected_sample_rate}. " f"Given: {sample_rate}"
|
199 |
-
)
|
200 |
-
# We use only the first channel
|
201 |
-
ans.append(wave[0])
|
202 |
-
return ans
|
203 |
-
|
204 |
-
|
205 |
-
class OfflineAsr(object):
|
206 |
-
def __init__(
|
207 |
-
self,
|
208 |
-
nn_model_filename: str,
|
209 |
-
bpe_model_filename: Optional[str] = None,
|
210 |
-
token_filename: Optional[str] = None,
|
211 |
-
decoding_method: str = "greedy_search",
|
212 |
-
num_active_paths: int = 4,
|
213 |
-
sample_rate: int = 16000,
|
214 |
-
device: Union[str, torch.device] = "cpu",
|
215 |
-
):
|
216 |
-
"""
|
217 |
-
Args:
|
218 |
-
nn_model_filename:
|
219 |
-
Path to the torch script model.
|
220 |
-
bpe_model_filename:
|
221 |
-
Path to the BPE model. If it is None, you have to provide
|
222 |
-
`token_filename`.
|
223 |
-
token_filename:
|
224 |
-
Path to tokens.txt. If it is None, you have to provide
|
225 |
-
`bpe_model_filename`.
|
226 |
-
sample_rate:
|
227 |
-
Expected sample rate of the feature extractor.
|
228 |
-
device:
|
229 |
-
The device to use for computation.
|
230 |
-
"""
|
231 |
-
self.model = RnntConformerModel(
|
232 |
-
filename=nn_model_filename,
|
233 |
-
device=device,
|
234 |
-
optimize_for_inference=False,
|
235 |
-
)
|
236 |
-
|
237 |
-
if bpe_model_filename:
|
238 |
-
self.sp = spm.SentencePieceProcessor()
|
239 |
-
self.sp.load(bpe_model_filename)
|
240 |
-
else:
|
241 |
-
assert token_filename is not None, token_filename
|
242 |
-
self.token_table = k2.SymbolTable.from_file(token_filename)
|
243 |
-
|
244 |
-
self.feature_extractor = self._build_feature_extractor(
|
245 |
-
sample_rate=sample_rate,
|
246 |
-
device=device,
|
247 |
-
)
|
248 |
-
|
249 |
-
self.device = device
|
250 |
-
|
251 |
-
def _build_feature_extractor(
|
252 |
-
self,
|
253 |
-
sample_rate: int = 16000,
|
254 |
-
device: Union[str, torch.device] = "cpu",
|
255 |
-
) -> kaldifeat.OfflineFeature:
|
256 |
-
"""Build a fbank feature extractor for extracting features.
|
257 |
-
|
258 |
-
Args:
|
259 |
-
sample_rate:
|
260 |
-
Expected sample rate of the feature extractor.
|
261 |
-
device:
|
262 |
-
The device to use for computation.
|
263 |
-
Returns:
|
264 |
-
Return a fbank feature extractor.
|
265 |
-
"""
|
266 |
-
opts = kaldifeat.FbankOptions()
|
267 |
-
opts.device = device
|
268 |
-
opts.frame_opts.dither = 0
|
269 |
-
opts.frame_opts.snip_edges = False
|
270 |
-
opts.frame_opts.samp_freq = sample_rate
|
271 |
-
opts.mel_opts.num_bins = 80
|
272 |
-
|
273 |
-
fbank = kaldifeat.Fbank(opts)
|
274 |
-
|
275 |
-
return fbank
|
276 |
-
|
277 |
-
def decode_waves(
|
278 |
-
self,
|
279 |
-
waves: List[torch.Tensor],
|
280 |
-
decoding_method: str,
|
281 |
-
num_active_paths: int,
|
282 |
-
) -> List[List[str]]:
|
283 |
-
"""
|
284 |
-
Args:
|
285 |
-
waves:
|
286 |
-
A list of 1-D torch.float32 tensors containing audio samples.
|
287 |
-
wavs[i] contains audio samples for the i-th utterance.
|
288 |
-
|
289 |
-
Note:
|
290 |
-
Whether it should be in the range [-32768, 32767] or be normalized
|
291 |
-
to [-1, 1] depends on which range you used for your training data.
|
292 |
-
For instance, if your training data used [-32768, 32767],
|
293 |
-
then the given waves have to contain samples in this range.
|
294 |
-
|
295 |
-
All models trained in icefall use the normalized range [-1, 1].
|
296 |
-
decoding_method:
|
297 |
-
The decoding method to use. Currently, only greedy_search and
|
298 |
-
modified_beam_search are implemented.
|
299 |
-
num_active_paths:
|
300 |
-
Used only when decoding_method is modified_beam_search.
|
301 |
-
It specifies number of active paths for each utterance. Due to
|
302 |
-
merging paths with identical token sequences, the actual number
|
303 |
-
may be less than "num_active_paths".
|
304 |
-
Returns:
|
305 |
-
Return a list of decoded results. `ans[i]` contains the decoded
|
306 |
-
results for `wavs[i]`.
|
307 |
-
"""
|
308 |
-
assert decoding_method in (
|
309 |
-
"greedy_search",
|
310 |
-
"modified_beam_search",
|
311 |
-
), decoding_method
|
312 |
-
|
313 |
-
if decoding_method == "greedy_search":
|
314 |
-
nn_and_decoding_func = run_model_and_do_greedy_search
|
315 |
-
elif decoding_method == "modified_beam_search":
|
316 |
-
nn_and_decoding_func = functools.partial(
|
317 |
-
run_model_and_do_modified_beam_search,
|
318 |
-
num_active_paths=num_active_paths,
|
319 |
-
)
|
320 |
-
else:
|
321 |
-
raise ValueError(
|
322 |
-
f"Unsupported decoding_method: {decoding_method} "
|
323 |
-
"Please use greedy_search or modified_beam_search"
|
324 |
-
)
|
325 |
-
|
326 |
-
waves = [w.to(self.device) for w in waves]
|
327 |
-
features = self.feature_extractor(waves)
|
328 |
-
|
329 |
-
tokens = nn_and_decoding_func(self.model, features)
|
330 |
-
|
331 |
-
if hasattr(self, "sp"):
|
332 |
-
results = self.sp.decode(tokens)
|
333 |
-
else:
|
334 |
-
results = [[self.token_table[i] for i in hyp] for hyp in tokens]
|
335 |
-
blank = chr(0x2581)
|
336 |
-
results = ["".join(r) for r in results]
|
337 |
-
results = [r.replace(blank, " ") for r in results]
|
338 |
-
|
339 |
-
return results
|
340 |
-
|
341 |
-
|
342 |
-
@torch.no_grad()
|
343 |
-
def main():
|
344 |
-
args = get_args()
|
345 |
-
logging.info(vars(args))
|
346 |
-
|
347 |
-
nn_model_filename = args.nn_model_filename
|
348 |
-
bpe_model_filename = args.bpe_model_filename
|
349 |
-
token_filename = args.token_filename
|
350 |
-
decoding_method = args.decoding_method
|
351 |
-
num_active_paths = args.num_active_paths
|
352 |
-
sample_rate = args.sample_rate
|
353 |
-
sound_files = args.sound_files
|
354 |
-
|
355 |
-
assert decoding_method in ("greedy_search", "modified_beam_search"), decoding_method
|
356 |
-
|
357 |
-
if decoding_method == "modified_beam_search":
|
358 |
-
assert num_active_paths >= 1, num_active_paths
|
359 |
-
|
360 |
-
if bpe_model_filename:
|
361 |
-
assert token_filename is None
|
362 |
-
|
363 |
-
if token_filename:
|
364 |
-
assert bpe_model_filename is None
|
365 |
-
|
366 |
-
device = torch.device("cpu")
|
367 |
-
if torch.cuda.is_available():
|
368 |
-
device = torch.device("cuda", 0)
|
369 |
-
|
370 |
-
logging.info(f"device: {device}")
|
371 |
-
|
372 |
-
offline_asr = OfflineAsr(
|
373 |
-
nn_model_filename=nn_model_filename,
|
374 |
-
bpe_model_filename=bpe_model_filename,
|
375 |
-
token_filename=token_filename,
|
376 |
-
decoding_method=decoding_method,
|
377 |
-
num_active_paths=num_active_paths,
|
378 |
-
sample_rate=sample_rate,
|
379 |
-
device=device,
|
380 |
-
)
|
381 |
-
|
382 |
-
waves = read_sound_files(
|
383 |
-
filenames=sound_files,
|
384 |
-
expected_sample_rate=sample_rate,
|
385 |
-
)
|
386 |
-
|
387 |
-
logging.info("Decoding started.")
|
388 |
-
|
389 |
-
hyps = offline_asr.decode_waves(waves)
|
390 |
-
|
391 |
-
s = "\n"
|
392 |
-
for filename, hyp in zip(sound_files, hyps):
|
393 |
-
s += f"{filename}:\n{hyp}\n\n"
|
394 |
-
logging.info(s)
|
395 |
-
|
396 |
-
logging.info("Decoding done.")
|
397 |
-
|
398 |
-
|
399 |
-
torch.set_num_threads(1)
|
400 |
-
torch.set_num_interop_threads(1)
|
401 |
-
|
402 |
-
# See https://github.com/pytorch/pytorch/issues/38342
|
403 |
-
# and https://github.com/pytorch/pytorch/issues/33354
|
404 |
-
#
|
405 |
-
# If we don't do this, the delay increases whenever there is
|
406 |
-
# a new request that changes the actual batch size.
|
407 |
-
# If you use `py-spy dump --pid <server-pid> --native`, you will
|
408 |
-
# see a lot of time is spent in re-compiling the torch script model.
|
409 |
-
torch._C._jit_set_profiling_executor(False)
|
410 |
-
torch._C._jit_set_profiling_mode(False)
|
411 |
-
torch._C._set_graph_executor_optimize(False)
|
412 |
-
"""
|
413 |
-
// Use the following in C++
|
414 |
-
torch::jit::getExecutorMode() = false;
|
415 |
-
torch::jit::getProfilingMode() = false;
|
416 |
-
torch::jit::setGraphExecutorOptimize(false);
|
417 |
-
"""
|
418 |
-
|
419 |
-
if __name__ == "__main__":
|
420 |
-
torch.manual_seed(20220609)
|
421 |
-
|
422 |
-
formatter = (
|
423 |
-
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" # noqa
|
424 |
-
)
|
425 |
-
logging.basicConfig(format=formatter, level=logging.INFO)
|
426 |
-
|
427 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|