Spaces:
Runtime error
Runtime error
File size: 24,001 Bytes
b11ae09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import argparse
import os
import sys
import json
import tqdm
import copy
from queue import PriorityQueue
import functools
import spacy
nlp = spacy.load("en_core_web_sm")
import cv2
from PIL import Image
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, CLIPImageProcessor
from transformers import OwlViTProcessor
from VisualSearch.model.VSM import VSMForCausalLM
from VisualSearch.model.llava import conversation as conversation_lib
from VisualSearch.model.llava.mm_utils import tokenizer_image_token
from VisualSearch.utils.utils import expand2square
from VisualSearch.utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
def parse_args(args):
parser = argparse.ArgumentParser(description="Visual Search Evaluation")
parser.add_argument("--version", default="craigwu/seal_vsm_7b")
parser.add_argument("--benchmark-folder", default="vstar_bench", type=str)
parser.add_argument("--visualization", action="store_true", default=False)
parser.add_argument("--output_path", default="", type=str)
parser.add_argument("--confidence_low", default=0.3, type=float)
parser.add_argument("--confidence_high", default=0.5, type=float)
parser.add_argument("--target_cue_threshold", default=6.0, type=float)
parser.add_argument("--target_cue_threshold_decay", default=0.7, type=float)
parser.add_argument("--target_cue_threshold_minimum", default=3.0, type=float)
parser.add_argument("--minimum_size_scale", default=4.0, type=float)
parser.add_argument("--minimum_size", default=224, type=int)
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args)
def tranverse(token):
children = [_ for _ in token.children]
if len(children) == 0:
return token.i, token.i
left_i = token.i
right_i = token.i
for child in children:
child_left_i, child_right_i = tranverse(child)
left_i = min(left_i, child_left_i)
right_i = max(right_i, child_right_i)
return left_i, right_i
def get_noun_chunks(token):
left_children = []
right_children = []
for child in token.children:
if child.i < token.i:
left_children.append(child)
else:
right_children.append(child)
start_token_i = token.i
for left_child in left_children[::-1]:
if left_child.dep_ in ['amod', 'compound', 'poss']:
start_token_i, _ = tranverse(left_child)
else:
break
end_token_i = token.i
for right_child in right_children:
if right_child.dep_ in ['relcl', 'prep']:
_, end_token_i = tranverse(right_child)
else:
break
return start_token_i, end_token_i
def filter_chunk_list(chunks):
def overlap(min1, max1, min2, max2):
return min(max1, max2) - max(min1, min2)
chunks = sorted(chunks, key=lambda chunk: chunk[1]-chunk[0], reverse=True)
filtered_chunks = []
for chunk in chunks:
flag=True
for exist_chunk in filtered_chunks:
if overlap(exist_chunk[0], exist_chunk[1], chunk[0], chunk[1]) >= 0:
flag = False
break
if flag:
filtered_chunks.append(chunk)
return sorted(filtered_chunks, key=lambda chunk: chunk[0])
def extract_noun_chunks(expression):
doc = nlp(expression)
cur_chunks = []
for token in doc:
if token.pos_ not in ["NOUN", "PRON"]:
continue
cur_chunks.append(get_noun_chunks(token))
cur_chunks = filter_chunk_list(cur_chunks)
cur_chunks = [doc[chunk[0]:chunk[1]+1].text for chunk in cur_chunks]
return cur_chunks
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
class VSM:
def __init__(self, args):
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
kwargs['device_map'] = 'cuda'
kwargs['is_eval'] = True
vsm_tokenizer = AutoTokenizer.from_pretrained(
args.version,
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
vsm_tokenizer.pad_token = vsm_tokenizer.unk_token
loc_token_idx = vsm_tokenizer("[LOC]", add_special_tokens=False).input_ids[0]
vsm_model = VSMForCausalLM.from_pretrained(
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, loc_token_idx=loc_token_idx, **kwargs
)
vsm_model.get_model().initialize_vision_modules(vsm_model.get_model().config)
vision_tower = vsm_model.get_model().get_vision_tower().cuda().to(dtype=torch.bfloat16)
vsm_image_processor = vision_tower.image_processor
vsm_model.eval()
clip_image_processor = CLIPImageProcessor.from_pretrained(vsm_model.config.vision_tower)
transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16")
self.model = vsm_model
self.vsm_tokenizer = vsm_tokenizer
self.vsm_image_processor = vsm_image_processor
self.clip_image_processor = clip_image_processor
self.transform = transform
self.conv_type = args.conv_type
self.use_mm_start_end = args.use_mm_start_end
@torch.inference_mode()
def inference(self, image, question, mode='segmentation'):
conv = conversation_lib.conv_templates[self.conv_type].copy()
conv.messages = []
prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
if self.use_mm_start_end:
replace_token = ( DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
background_color = tuple(int(x*255) for x in self.clip_image_processor.image_mean)
image_clip = self.clip_image_processor.preprocess(expand2square(image, background_color), return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda()
image_clip = image_clip.bfloat16()
image = np.array(image)
original_size_list = [image.shape[:2]]
image = self.transform(images=image, return_tensors="pt")['pixel_values'].cuda()
resize_list = [image.shape[:2]]
image = image.bfloat16()
input_ids = tokenizer_image_token(prompt, self.vsm_tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks, det_result = self.model.inference(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=100,
tokenizer=self.vsm_tokenizer,
mode = mode
)
if mode == 'segmentation':
pred_mask = pred_masks[0]
pred_mask = torch.clamp(pred_mask, min=0)
return pred_mask[-1]
elif mode == 'vqa':
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
text_output = self.vsm_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
text_output = text_output.replace("\n", "").replace(" ", " ").strip()
return text_output
elif mode == 'detection':
pred_mask = pred_masks[0]
pred_mask = torch.clamp(pred_mask, min=0)
return det_result['pred_boxes'][0].cpu(), det_result['pred_logits'][0].sigmoid().cpu(), pred_mask[-1]
def refine_bbox(bbox, image_width, image_height):
bbox[0] = max(0, bbox[0])
bbox[1] = max(0, bbox[1])
bbox[2] = min(bbox[2], image_width-bbox[0])
bbox[3] = min(bbox[3], image_height-bbox[1])
return bbox
def split_4subpatches(current_patch_bbox):
hw_ratio = current_patch_bbox[3] / current_patch_bbox[2]
if hw_ratio >= 2:
return 1, 4
elif hw_ratio <= 0.5:
return 4, 1
else:
return 2, 2
def get_sub_patches(current_patch_bbox, num_of_width_patches, num_of_height_patches):
width_stride = int(current_patch_bbox[2]//num_of_width_patches)
height_stride = int(current_patch_bbox[3]/num_of_height_patches)
sub_patches = []
for j in range(num_of_height_patches):
for i in range(num_of_width_patches):
sub_patch_width = current_patch_bbox[2] - i*width_stride if i == num_of_width_patches-1 else width_stride
sub_patch_height = current_patch_bbox[3] - j*height_stride if j == num_of_height_patches-1 else height_stride
sub_patch = [current_patch_bbox[0]+i*width_stride, current_patch_bbox[1]+j*height_stride, sub_patch_width, sub_patch_height]
sub_patches.append(sub_patch)
return sub_patches, width_stride, height_stride
def get_subpatch_scores(score_heatmap, current_patch_bbox, sub_patches):
total_sum = (score_heatmap/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
sub_scores = []
for sub_patch in sub_patches:
bbox = [(sub_patch[0]-current_patch_bbox[0]), sub_patch[1]-current_patch_bbox[1], sub_patch[2], sub_patch[3]]
score = (score_heatmap[bbox[1]:bbox[1]+bbox[3], bbox[0]:bbox[0]+bbox[2]]/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
if total_sum > 0:
score /= total_sum
else:
score *= 0
sub_scores.append(score)
return sub_scores
def normalize_score(score_heatmap):
max_score = score_heatmap.max()
min_score = score_heatmap.min()
if max_score != min_score:
score_heatmap = (score_heatmap - min_score) / (max_score - min_score)
else:
score_heatmap = score_heatmap * 0
return score_heatmap
def iou(bbox1, bbox2):
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[0]+bbox1[2], bbox2[0]+bbox2[2])
y2 = min(bbox1[1]+bbox1[3],bbox2[1]+bbox2[3])
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
return inter_area/(bbox1[2]*bbox1[3]+bbox2[2]*bbox2[3]-inter_area)
BOX_COLOR = (255, 0, 0) # Red
TEXT_COLOR = (255, 255, 255) # White
import cv2
from matplotlib import pyplot as plt
def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):
"""Visualizes a single bounding box on the image"""
x_min, y_min, w, h = bbox
x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
cv2.putText(
img,
text=class_name,
org=(x_min, y_min - int(0.3 * text_height)),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=TEXT_COLOR,
lineType=cv2.LINE_AA,
)
return img
def show_heatmap_on_image(img: np.ndarray,
mask: np.ndarray,
use_rgb: bool = False,
colormap: int = cv2.COLORMAP_JET,
image_weight: float = 0.5) -> np.ndarray:
mask = np.clip(mask, 0, 1)
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
if use_rgb:
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
heatmap = np.float32(heatmap) / 255
if np.max(img) > 1:
raise Exception(
"The input image should np.float32 in the range [0, 1]")
if image_weight < 0 or image_weight > 1:
raise Exception(
f"image_weight should be in the range [0, 1].\
Got: {image_weight}")
cam = (1 - image_weight) * heatmap + image_weight * img
cam = cam / np.max(cam)
return np.uint8(255 * cam)
def vis_heatmap(image, heatmap, use_rgb=False):
max_v = np.max(heatmap)
min_v = np.min(heatmap)
if max_v != min_v:
heatmap = (heatmap - min_v) / (max_v - min_v)
heatmap_image = show_heatmap_on_image(image.astype(float)/255., heatmap, use_rgb=use_rgb)
return heatmap_image
def visualize_search_path(image, search_path, search_length, target_bbox, label, save_path):
context_cue_list = []
whole_image = image
os.makedirs(save_path, exist_ok=True)
whole_image.save(os.path.join(save_path, 'whole_image.jpg'))
whole_image = np.array(whole_image)
if target_bbox is not None:
whole_image = visualize_bbox(whole_image.copy(), target_bbox, class_name="gt: "+label, color=(255,0,0))
for step_i, node in enumerate(search_path):
if step_i + 1 > search_length:
break
current_patch_box = node['bbox']
if 'detection_result' in node:
final_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
final_patch_image.save(os.path.join(save_path, 'final_patch_image.jpg'))
final_search_result = visualize_bbox(np.array(final_patch_image), node['detection_result'], class_name='search result', color=(255,0,0))
final_search_result = cv2.cvtColor(final_search_result, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_path, 'search_result.jpg'), final_search_result)
cur_whole_image = visualize_bbox(whole_image.copy(), current_patch_box, class_name="step-{}".format(step_i+1), color=(0,0,255))
# if step_i != len(search_path)-1:
# next_patch_box = search_path[step_i+1]['bbox']
# cur_whole_image = visualize_bbox(cur_whole_image, next_patch_box, class_name="next-step", color=(0,255,0))
cur_whole_image = cv2.cvtColor(cur_whole_image, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_path, 'step_{}.jpg'.format(step_i+1)), cur_whole_image)
cur_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
if 'context_cue' in node:
context_cue = node['context_cue']
context_cue_list.append('step{}: {}'.format(step_i+1, context_cue)+'\n')
if 'final_heatmap' in node:
score_map = node['final_heatmap']
score_map = vis_heatmap(np.array(cur_patch_image), score_map, use_rgb=True)
score_map = cv2.cvtColor(score_map, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_path, 'step_{}_heatmap.jpg'.format(step_i+1)), score_map)
with open(os.path.join(save_path, 'context_cue.txt'),"w") as f:
f.writelines(context_cue_list)
@functools.total_ordering
class Prioritize:
def __init__(self, priority, item):
self.priority = priority
self.item = item
def __eq__(self, other):
return self.priority == other.priority
def __lt__(self, other):
return self.priority < other.priority
def visual_search_queue(vsm, image, target_object_name, current_patch, search_path, queue, smallest_size=224, confidence_high=0.5, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0):
current_patch_bbox = current_patch['bbox']
current_patch_scale_level = current_patch['scale_level']
image_patch = image.crop((int(current_patch_bbox[0]), int(current_patch_bbox[1]), int(current_patch_bbox[0]+current_patch_bbox[2]), int(current_patch_bbox[1]+current_patch_bbox[3])))
# whehter we can detect the target object on the current image patch
question = "Please locate the {} in this image.".format(target_object_name)
pred_bboxes, pred_logits, target_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='detection')
if len(pred_logits) > 0:
top_index = pred_logits.view(-1).argmax()
top_logit = pred_logits.view(-1).max()
final_bbox = pred_bboxes[top_index].view(4)
final_bbox = final_bbox * torch.Tensor([image_patch.width, image_patch.height, image_patch.width, image_patch.height])
final_bbox[:2] -= final_bbox[2:] / 2
if top_logit > confidence_high:
search_path[-1]['detection_result'] = final_bbox
# only return multiple detected instances on the whole image
if len(search_path) == 1:
all_valid_boxes = pred_bboxes[pred_logits.view(-1)>0.5].view(-1, 4)
all_valid_boxes = all_valid_boxes * torch.Tensor([[image_patch.width, image_patch.height, image_patch.width, image_patch.height]])
all_valid_boxes[:, :2] -= all_valid_boxes[:, 2:] / 2
return True, search_path, all_valid_boxes
return True, search_path, None
else:
search_path[-1]['temp_detection_result'] = (top_logit, final_bbox)
### current patch is already the smallest unit
if min(current_patch_bbox[2], current_patch_bbox[3]) <= smallest_size:
return False, search_path, None
target_cue_heatmap = target_cue_heatmap.view(current_patch_bbox[3], current_patch_bbox[2], 1)
score_max = target_cue_heatmap.max().item()
# check whether the target cue is prominent
threshold = max(target_cue_threshold_minimum, target_cue_threshold*(target_cue_threshold_decay)**(current_patch_scale_level-1))
if score_max > threshold:
target_cue_heatmap = normalize_score(target_cue_heatmap)
final_heatmap = target_cue_heatmap
else:
question = "According to the common sense knowledge and possible visual cues, what is the most likely location of the {} in the image?".format(target_object_name)
vqa_results = vsm.inference(copy.deepcopy(image_patch), question, mode='vqa')
possible_location_phrase = vqa_results.split('most likely to appear')[-1].strip()
if possible_location_phrase.endswith('.'):
possible_location_phrase = possible_location_phrase[:-1]
possible_location_phrase = possible_location_phrase.split(target_object_name)[-1]
noun_chunks = extract_noun_chunks(possible_location_phrase)
if len(noun_chunks) == 1:
possible_location_phrase = noun_chunks[0]
else:
possible_location_phrase = "region {}".format(possible_location_phrase)
question = "Please locate the {} in this image.".format(possible_location_phrase)
context_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='segmentation').view(current_patch_bbox[3], current_patch_bbox[2], 1)
context_cue_heatmap = normalize_score(context_cue_heatmap)
final_heatmap = context_cue_heatmap
current_patch_index = len(search_path)-1
if score_max <= threshold:
search_path[current_patch_index]['context_cue'] = vqa_results + "#" + possible_location_phrase
search_path[current_patch_index]['final_heatmap'] = final_heatmap.cpu().numpy()
### split the current patch into 4 sub-patches
basic_sub_patches, sub_patch_width, sub_patch_height = get_sub_patches(current_patch_bbox, *split_4subpatches(current_patch_bbox))
tmp_patch = current_patch
basic_sub_scores = [0]*len(basic_sub_patches)
while True:
tmp_score_heatmap = tmp_patch['final_heatmap']
tmp_sub_scores = get_subpatch_scores(tmp_score_heatmap, tmp_patch['bbox'], basic_sub_patches)
basic_sub_scores = [basic_sub_scores[patch_i]+tmp_sub_scores[patch_i]/(4**tmp_patch['scale_level']) for patch_i in range(len(basic_sub_scores))]
if tmp_patch['parent_index'] == -1:
break
else:
tmp_patch = search_path[tmp_patch['parent_index']]
sub_patches = basic_sub_patches
sub_scores = basic_sub_scores
for sub_patch, sub_score in zip(sub_patches, sub_scores):
new_patch_info = dict()
new_patch_info['bbox'] = sub_patch
new_patch_info['scale_level'] = current_patch_scale_level + 1
new_patch_info['score'] = sub_score
new_patch_info['parent_index'] = current_patch_index
queue.put(Prioritize(-new_patch_info['score'], new_patch_info))
while(not queue.empty()):
patch_chosen = queue.get().item
search_path.append(patch_chosen)
success, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, patch_chosen, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
if success:
return success, search_path, all_valid_boxes
return False, search_path, None
def visual_search(vsm, image, target_object_name, target_bbox, smallest_size, confidence_high=0.5, confidence_low=0.3, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0, visualize=False, save_path=None):
if visualize:
assert save_path is not None
init_patch = dict()
init_patch['bbox'] = [0,0,image.width,image.height]
init_patch['scale_level'] = 1
init_patch['score'] = None
init_patch['parent_index'] = -1
search_path = [init_patch]
queue = PriorityQueue()
search_successful, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, init_patch, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
path_length = len(search_path)
final_step = search_path[-1]
if not search_successful:
# if no target is found with confidence passing confidence_high, select the target with the highest confidence during search and compare its confidence with confidence_low
max_logit = 0
final_step = None
path_length = 0
for i, search_step in enumerate(search_path):
if 'temp_detection_result' in search_step:
if search_step['temp_detection_result'][0] > max_logit:
max_logit = search_step['temp_detection_result'][0]
final_step = search_step
path_length = i+1
final_step['detection_result'] = final_step['temp_detection_result'][1]
if max_logit >= confidence_low:
search_successful = True
if visualize:
vis_path_length = path_length if search_successful else len(search_path)
visualize_search_path(image, search_path, vis_path_length, target_bbox, target_object_name, save_path)
del queue
return final_step, path_length, search_successful, all_valid_boxes
def main(args):
args = parse_args(args)
vsm = VSM(args)
benchmark_folder = args.benchmark_folder
acc_list = []
search_path_length_list = []
for test_type in ['direct_attributes', 'relative_position']:
folder = os.path.join(benchmark_folder, test_type)
output_folder = None
if args.visualization:
output_folder = os.path.join(args.output_path, test_type)
os.makedirs(output_folder, exist_ok=True)
image_files = filter(lambda file: '.json' not in file, os.listdir(folder))
for image_file in tqdm.tqdm(image_files):
image_path = os.path.join(folder, image_file)
annotation_path = image_path.split('.')[0] + '.json'
annotation = json.load(open(annotation_path))
bboxs = annotation['bbox']
object_names = annotation['target_object']
for i, (gt_bbox, object_name) in enumerate(zip(bboxs, object_names)):
image = Image.open(image_path).convert('RGB')
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
if args.visualization:
vis_path = os.path.join(output_folder, "{}_{}".format(image_file.split('.')[0],i))
else:
vis_path = None
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=gt_bbox, smallest_size=smallest_size, confidence_high=args.confidence_high, confidence_low=args.confidence_low, target_cue_threshold=args.target_cue_threshold, target_cue_threshold_decay=args.target_cue_threshold_decay, target_cue_threshold_minimum=args.target_cue_threshold_minimum, save_path=vis_path, visualize=args.visualization)
if search_successful:
search_bbox = final_step['detection_result']
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
iou_i = iou(search_bbox, gt_bbox).item()
det_acc = 1.0 if iou_i > 0.5 else 0.0
acc_list.append(det_acc)
search_path_length_list.append(path_length)
else:
acc_list.append(0)
search_path_length_list.append(0)
print('Avg search path length:', np.mean([search_path_length_list[i] for i in range(len(search_path_length_list)) if acc_list[i]]))
print('Top 1 Acc:', np.mean(acc_list))
if __name__ == "__main__":
main(sys.argv[1:]) |