Spaces:
Runtime error
Runtime error
Penghao Wu
commited on
Commit
•
b11ae09
1
Parent(s):
3672502
init
Browse files- visual_search.py +567 -0
- vstar_bench_eval.py +294 -0
visual_search.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import tqdm
|
6 |
+
import copy
|
7 |
+
from queue import PriorityQueue
|
8 |
+
import functools
|
9 |
+
import spacy
|
10 |
+
nlp = spacy.load("en_core_web_sm")
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
from PIL import Image
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from transformers import AutoTokenizer, CLIPImageProcessor
|
18 |
+
from transformers import OwlViTProcessor
|
19 |
+
|
20 |
+
from VisualSearch.model.VSM import VSMForCausalLM
|
21 |
+
from VisualSearch.model.llava import conversation as conversation_lib
|
22 |
+
from VisualSearch.model.llava.mm_utils import tokenizer_image_token
|
23 |
+
from VisualSearch.utils.utils import expand2square
|
24 |
+
from VisualSearch.utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
|
25 |
+
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
|
26 |
+
|
27 |
+
|
28 |
+
def parse_args(args):
|
29 |
+
parser = argparse.ArgumentParser(description="Visual Search Evaluation")
|
30 |
+
parser.add_argument("--version", default="craigwu/seal_vsm_7b")
|
31 |
+
parser.add_argument("--benchmark-folder", default="vstar_bench", type=str)
|
32 |
+
parser.add_argument("--visualization", action="store_true", default=False)
|
33 |
+
parser.add_argument("--output_path", default="", type=str)
|
34 |
+
parser.add_argument("--confidence_low", default=0.3, type=float)
|
35 |
+
parser.add_argument("--confidence_high", default=0.5, type=float)
|
36 |
+
parser.add_argument("--target_cue_threshold", default=6.0, type=float)
|
37 |
+
parser.add_argument("--target_cue_threshold_decay", default=0.7, type=float)
|
38 |
+
parser.add_argument("--target_cue_threshold_minimum", default=3.0, type=float)
|
39 |
+
parser.add_argument("--minimum_size_scale", default=4.0, type=float)
|
40 |
+
parser.add_argument("--minimum_size", default=224, type=int)
|
41 |
+
parser.add_argument("--model_max_length", default=512, type=int)
|
42 |
+
parser.add_argument(
|
43 |
+
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
|
44 |
+
)
|
45 |
+
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
|
46 |
+
parser.add_argument(
|
47 |
+
"--conv_type",
|
48 |
+
default="llava_v1",
|
49 |
+
type=str,
|
50 |
+
choices=["llava_v1", "llava_llama_2"],
|
51 |
+
)
|
52 |
+
return parser.parse_args(args)
|
53 |
+
|
54 |
+
def tranverse(token):
|
55 |
+
children = [_ for _ in token.children]
|
56 |
+
if len(children) == 0:
|
57 |
+
return token.i, token.i
|
58 |
+
left_i = token.i
|
59 |
+
right_i = token.i
|
60 |
+
for child in children:
|
61 |
+
child_left_i, child_right_i = tranverse(child)
|
62 |
+
left_i = min(left_i, child_left_i)
|
63 |
+
right_i = max(right_i, child_right_i)
|
64 |
+
return left_i, right_i
|
65 |
+
def get_noun_chunks(token):
|
66 |
+
left_children = []
|
67 |
+
right_children = []
|
68 |
+
for child in token.children:
|
69 |
+
if child.i < token.i:
|
70 |
+
left_children.append(child)
|
71 |
+
else:
|
72 |
+
right_children.append(child)
|
73 |
+
|
74 |
+
start_token_i = token.i
|
75 |
+
for left_child in left_children[::-1]:
|
76 |
+
if left_child.dep_ in ['amod', 'compound', 'poss']:
|
77 |
+
start_token_i, _ = tranverse(left_child)
|
78 |
+
else:
|
79 |
+
break
|
80 |
+
end_token_i = token.i
|
81 |
+
for right_child in right_children:
|
82 |
+
if right_child.dep_ in ['relcl', 'prep']:
|
83 |
+
_, end_token_i = tranverse(right_child)
|
84 |
+
else:
|
85 |
+
break
|
86 |
+
return start_token_i, end_token_i
|
87 |
+
|
88 |
+
def filter_chunk_list(chunks):
|
89 |
+
def overlap(min1, max1, min2, max2):
|
90 |
+
return min(max1, max2) - max(min1, min2)
|
91 |
+
chunks = sorted(chunks, key=lambda chunk: chunk[1]-chunk[0], reverse=True)
|
92 |
+
filtered_chunks = []
|
93 |
+
for chunk in chunks:
|
94 |
+
flag=True
|
95 |
+
for exist_chunk in filtered_chunks:
|
96 |
+
if overlap(exist_chunk[0], exist_chunk[1], chunk[0], chunk[1]) >= 0:
|
97 |
+
flag = False
|
98 |
+
break
|
99 |
+
if flag:
|
100 |
+
filtered_chunks.append(chunk)
|
101 |
+
return sorted(filtered_chunks, key=lambda chunk: chunk[0])
|
102 |
+
|
103 |
+
def extract_noun_chunks(expression):
|
104 |
+
doc = nlp(expression)
|
105 |
+
cur_chunks = []
|
106 |
+
for token in doc:
|
107 |
+
if token.pos_ not in ["NOUN", "PRON"]:
|
108 |
+
continue
|
109 |
+
cur_chunks.append(get_noun_chunks(token))
|
110 |
+
cur_chunks = filter_chunk_list(cur_chunks)
|
111 |
+
cur_chunks = [doc[chunk[0]:chunk[1]+1].text for chunk in cur_chunks]
|
112 |
+
return cur_chunks
|
113 |
+
|
114 |
+
def preprocess(
|
115 |
+
x,
|
116 |
+
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
|
117 |
+
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
|
118 |
+
img_size=1024,
|
119 |
+
) -> torch.Tensor:
|
120 |
+
"""Normalize pixel values and pad to a square input."""
|
121 |
+
# Normalize colors
|
122 |
+
x = (x - pixel_mean) / pixel_std
|
123 |
+
# Pad
|
124 |
+
h, w = x.shape[-2:]
|
125 |
+
padh = img_size - h
|
126 |
+
padw = img_size - w
|
127 |
+
x = F.pad(x, (0, padw, 0, padh))
|
128 |
+
return x
|
129 |
+
|
130 |
+
def box_cxcywh_to_xyxy(x):
|
131 |
+
x_c, y_c, w, h = x.unbind(1)
|
132 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
|
133 |
+
(x_c + 0.5 * w), (y_c + 0.5 * h)]
|
134 |
+
return torch.stack(b, dim=1)
|
135 |
+
|
136 |
+
def rescale_bboxes(out_bbox, size):
|
137 |
+
img_w, img_h = size
|
138 |
+
b = box_cxcywh_to_xyxy(out_bbox)
|
139 |
+
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
|
140 |
+
return b
|
141 |
+
|
142 |
+
class VSM:
|
143 |
+
def __init__(self, args):
|
144 |
+
kwargs = {}
|
145 |
+
kwargs['torch_dtype'] = torch.bfloat16
|
146 |
+
kwargs['device_map'] = 'cuda'
|
147 |
+
kwargs['is_eval'] = True
|
148 |
+
vsm_tokenizer = AutoTokenizer.from_pretrained(
|
149 |
+
args.version,
|
150 |
+
cache_dir=None,
|
151 |
+
model_max_length=args.model_max_length,
|
152 |
+
padding_side="right",
|
153 |
+
use_fast=False,
|
154 |
+
)
|
155 |
+
vsm_tokenizer.pad_token = vsm_tokenizer.unk_token
|
156 |
+
loc_token_idx = vsm_tokenizer("[LOC]", add_special_tokens=False).input_ids[0]
|
157 |
+
vsm_model = VSMForCausalLM.from_pretrained(
|
158 |
+
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, loc_token_idx=loc_token_idx, **kwargs
|
159 |
+
)
|
160 |
+
vsm_model.get_model().initialize_vision_modules(vsm_model.get_model().config)
|
161 |
+
vision_tower = vsm_model.get_model().get_vision_tower().cuda().to(dtype=torch.bfloat16)
|
162 |
+
vsm_image_processor = vision_tower.image_processor
|
163 |
+
vsm_model.eval()
|
164 |
+
clip_image_processor = CLIPImageProcessor.from_pretrained(vsm_model.config.vision_tower)
|
165 |
+
transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16")
|
166 |
+
self.model = vsm_model
|
167 |
+
self.vsm_tokenizer = vsm_tokenizer
|
168 |
+
self.vsm_image_processor = vsm_image_processor
|
169 |
+
self.clip_image_processor = clip_image_processor
|
170 |
+
self.transform = transform
|
171 |
+
self.conv_type = args.conv_type
|
172 |
+
self.use_mm_start_end = args.use_mm_start_end
|
173 |
+
|
174 |
+
@torch.inference_mode()
|
175 |
+
def inference(self, image, question, mode='segmentation'):
|
176 |
+
conv = conversation_lib.conv_templates[self.conv_type].copy()
|
177 |
+
conv.messages = []
|
178 |
+
prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
|
179 |
+
if self.use_mm_start_end:
|
180 |
+
replace_token = ( DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN)
|
181 |
+
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
182 |
+
conv.append_message(conv.roles[0], prompt)
|
183 |
+
conv.append_message(conv.roles[1], "")
|
184 |
+
prompt = conv.get_prompt()
|
185 |
+
|
186 |
+
background_color = tuple(int(x*255) for x in self.clip_image_processor.image_mean)
|
187 |
+
image_clip = self.clip_image_processor.preprocess(expand2square(image, background_color), return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda()
|
188 |
+
|
189 |
+
image_clip = image_clip.bfloat16()
|
190 |
+
image = np.array(image)
|
191 |
+
original_size_list = [image.shape[:2]]
|
192 |
+
image = self.transform(images=image, return_tensors="pt")['pixel_values'].cuda()
|
193 |
+
resize_list = [image.shape[:2]]
|
194 |
+
image = image.bfloat16()
|
195 |
+
input_ids = tokenizer_image_token(prompt, self.vsm_tokenizer, return_tensors="pt")
|
196 |
+
input_ids = input_ids.unsqueeze(0).cuda()
|
197 |
+
|
198 |
+
output_ids, pred_masks, det_result = self.model.inference(
|
199 |
+
image_clip,
|
200 |
+
image,
|
201 |
+
input_ids,
|
202 |
+
resize_list,
|
203 |
+
original_size_list,
|
204 |
+
max_new_tokens=100,
|
205 |
+
tokenizer=self.vsm_tokenizer,
|
206 |
+
mode = mode
|
207 |
+
)
|
208 |
+
if mode == 'segmentation':
|
209 |
+
pred_mask = pred_masks[0]
|
210 |
+
pred_mask = torch.clamp(pred_mask, min=0)
|
211 |
+
return pred_mask[-1]
|
212 |
+
|
213 |
+
elif mode == 'vqa':
|
214 |
+
input_token_len = input_ids.shape[1]
|
215 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
216 |
+
if n_diff_input_output > 0:
|
217 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
218 |
+
text_output = self.vsm_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
219 |
+
text_output = text_output.replace("\n", "").replace(" ", " ").strip()
|
220 |
+
return text_output
|
221 |
+
|
222 |
+
elif mode == 'detection':
|
223 |
+
pred_mask = pred_masks[0]
|
224 |
+
pred_mask = torch.clamp(pred_mask, min=0)
|
225 |
+
return det_result['pred_boxes'][0].cpu(), det_result['pred_logits'][0].sigmoid().cpu(), pred_mask[-1]
|
226 |
+
|
227 |
+
def refine_bbox(bbox, image_width, image_height):
|
228 |
+
bbox[0] = max(0, bbox[0])
|
229 |
+
bbox[1] = max(0, bbox[1])
|
230 |
+
bbox[2] = min(bbox[2], image_width-bbox[0])
|
231 |
+
bbox[3] = min(bbox[3], image_height-bbox[1])
|
232 |
+
return bbox
|
233 |
+
|
234 |
+
def split_4subpatches(current_patch_bbox):
|
235 |
+
hw_ratio = current_patch_bbox[3] / current_patch_bbox[2]
|
236 |
+
if hw_ratio >= 2:
|
237 |
+
return 1, 4
|
238 |
+
elif hw_ratio <= 0.5:
|
239 |
+
return 4, 1
|
240 |
+
else:
|
241 |
+
return 2, 2
|
242 |
+
|
243 |
+
def get_sub_patches(current_patch_bbox, num_of_width_patches, num_of_height_patches):
|
244 |
+
width_stride = int(current_patch_bbox[2]//num_of_width_patches)
|
245 |
+
height_stride = int(current_patch_bbox[3]/num_of_height_patches)
|
246 |
+
sub_patches = []
|
247 |
+
for j in range(num_of_height_patches):
|
248 |
+
for i in range(num_of_width_patches):
|
249 |
+
sub_patch_width = current_patch_bbox[2] - i*width_stride if i == num_of_width_patches-1 else width_stride
|
250 |
+
sub_patch_height = current_patch_bbox[3] - j*height_stride if j == num_of_height_patches-1 else height_stride
|
251 |
+
sub_patch = [current_patch_bbox[0]+i*width_stride, current_patch_bbox[1]+j*height_stride, sub_patch_width, sub_patch_height]
|
252 |
+
sub_patches.append(sub_patch)
|
253 |
+
return sub_patches, width_stride, height_stride
|
254 |
+
|
255 |
+
def get_subpatch_scores(score_heatmap, current_patch_bbox, sub_patches):
|
256 |
+
total_sum = (score_heatmap/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
|
257 |
+
sub_scores = []
|
258 |
+
for sub_patch in sub_patches:
|
259 |
+
bbox = [(sub_patch[0]-current_patch_bbox[0]), sub_patch[1]-current_patch_bbox[1], sub_patch[2], sub_patch[3]]
|
260 |
+
score = (score_heatmap[bbox[1]:bbox[1]+bbox[3], bbox[0]:bbox[0]+bbox[2]]/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
|
261 |
+
if total_sum > 0:
|
262 |
+
score /= total_sum
|
263 |
+
else:
|
264 |
+
score *= 0
|
265 |
+
sub_scores.append(score)
|
266 |
+
return sub_scores
|
267 |
+
|
268 |
+
def normalize_score(score_heatmap):
|
269 |
+
max_score = score_heatmap.max()
|
270 |
+
min_score = score_heatmap.min()
|
271 |
+
if max_score != min_score:
|
272 |
+
score_heatmap = (score_heatmap - min_score) / (max_score - min_score)
|
273 |
+
else:
|
274 |
+
score_heatmap = score_heatmap * 0
|
275 |
+
return score_heatmap
|
276 |
+
|
277 |
+
def iou(bbox1, bbox2):
|
278 |
+
x1 = max(bbox1[0], bbox2[0])
|
279 |
+
y1 = max(bbox1[1], bbox2[1])
|
280 |
+
x2 = min(bbox1[0]+bbox1[2], bbox2[0]+bbox2[2])
|
281 |
+
y2 = min(bbox1[1]+bbox1[3],bbox2[1]+bbox2[3])
|
282 |
+
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
|
283 |
+
return inter_area/(bbox1[2]*bbox1[3]+bbox2[2]*bbox2[3]-inter_area)
|
284 |
+
|
285 |
+
BOX_COLOR = (255, 0, 0) # Red
|
286 |
+
TEXT_COLOR = (255, 255, 255) # White
|
287 |
+
import cv2
|
288 |
+
from matplotlib import pyplot as plt
|
289 |
+
def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):
|
290 |
+
"""Visualizes a single bounding box on the image"""
|
291 |
+
x_min, y_min, w, h = bbox
|
292 |
+
x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)
|
293 |
+
|
294 |
+
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
|
295 |
+
|
296 |
+
((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
297 |
+
cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
|
298 |
+
cv2.putText(
|
299 |
+
img,
|
300 |
+
text=class_name,
|
301 |
+
org=(x_min, y_min - int(0.3 * text_height)),
|
302 |
+
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
303 |
+
fontScale=0.5,
|
304 |
+
color=TEXT_COLOR,
|
305 |
+
lineType=cv2.LINE_AA,
|
306 |
+
)
|
307 |
+
return img
|
308 |
+
def show_heatmap_on_image(img: np.ndarray,
|
309 |
+
mask: np.ndarray,
|
310 |
+
use_rgb: bool = False,
|
311 |
+
colormap: int = cv2.COLORMAP_JET,
|
312 |
+
image_weight: float = 0.5) -> np.ndarray:
|
313 |
+
mask = np.clip(mask, 0, 1)
|
314 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
|
315 |
+
if use_rgb:
|
316 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
317 |
+
heatmap = np.float32(heatmap) / 255
|
318 |
+
|
319 |
+
if np.max(img) > 1:
|
320 |
+
raise Exception(
|
321 |
+
"The input image should np.float32 in the range [0, 1]")
|
322 |
+
|
323 |
+
if image_weight < 0 or image_weight > 1:
|
324 |
+
raise Exception(
|
325 |
+
f"image_weight should be in the range [0, 1].\
|
326 |
+
Got: {image_weight}")
|
327 |
+
|
328 |
+
cam = (1 - image_weight) * heatmap + image_weight * img
|
329 |
+
cam = cam / np.max(cam)
|
330 |
+
return np.uint8(255 * cam)
|
331 |
+
def vis_heatmap(image, heatmap, use_rgb=False):
|
332 |
+
max_v = np.max(heatmap)
|
333 |
+
min_v = np.min(heatmap)
|
334 |
+
if max_v != min_v:
|
335 |
+
heatmap = (heatmap - min_v) / (max_v - min_v)
|
336 |
+
heatmap_image = show_heatmap_on_image(image.astype(float)/255., heatmap, use_rgb=use_rgb)
|
337 |
+
return heatmap_image
|
338 |
+
|
339 |
+
def visualize_search_path(image, search_path, search_length, target_bbox, label, save_path):
|
340 |
+
context_cue_list = []
|
341 |
+
whole_image = image
|
342 |
+
os.makedirs(save_path, exist_ok=True)
|
343 |
+
whole_image.save(os.path.join(save_path, 'whole_image.jpg'))
|
344 |
+
|
345 |
+
whole_image = np.array(whole_image)
|
346 |
+
if target_bbox is not None:
|
347 |
+
whole_image = visualize_bbox(whole_image.copy(), target_bbox, class_name="gt: "+label, color=(255,0,0))
|
348 |
+
for step_i, node in enumerate(search_path):
|
349 |
+
if step_i + 1 > search_length:
|
350 |
+
break
|
351 |
+
current_patch_box = node['bbox']
|
352 |
+
if 'detection_result' in node:
|
353 |
+
final_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
|
354 |
+
final_patch_image.save(os.path.join(save_path, 'final_patch_image.jpg'))
|
355 |
+
final_search_result = visualize_bbox(np.array(final_patch_image), node['detection_result'], class_name='search result', color=(255,0,0))
|
356 |
+
final_search_result = cv2.cvtColor(final_search_result, cv2.COLOR_RGB2BGR)
|
357 |
+
cv2.imwrite(os.path.join(save_path, 'search_result.jpg'), final_search_result)
|
358 |
+
cur_whole_image = visualize_bbox(whole_image.copy(), current_patch_box, class_name="step-{}".format(step_i+1), color=(0,0,255))
|
359 |
+
# if step_i != len(search_path)-1:
|
360 |
+
# next_patch_box = search_path[step_i+1]['bbox']
|
361 |
+
# cur_whole_image = visualize_bbox(cur_whole_image, next_patch_box, class_name="next-step", color=(0,255,0))
|
362 |
+
cur_whole_image = cv2.cvtColor(cur_whole_image, cv2.COLOR_RGB2BGR)
|
363 |
+
cv2.imwrite(os.path.join(save_path, 'step_{}.jpg'.format(step_i+1)), cur_whole_image)
|
364 |
+
|
365 |
+
cur_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
|
366 |
+
if 'context_cue' in node:
|
367 |
+
context_cue = node['context_cue']
|
368 |
+
context_cue_list.append('step{}: {}'.format(step_i+1, context_cue)+'\n')
|
369 |
+
if 'final_heatmap' in node:
|
370 |
+
score_map = node['final_heatmap']
|
371 |
+
score_map = vis_heatmap(np.array(cur_patch_image), score_map, use_rgb=True)
|
372 |
+
score_map = cv2.cvtColor(score_map, cv2.COLOR_RGB2BGR)
|
373 |
+
cv2.imwrite(os.path.join(save_path, 'step_{}_heatmap.jpg'.format(step_i+1)), score_map)
|
374 |
+
|
375 |
+
with open(os.path.join(save_path, 'context_cue.txt'),"w") as f:
|
376 |
+
f.writelines(context_cue_list)
|
377 |
+
|
378 |
+
@functools.total_ordering
|
379 |
+
class Prioritize:
|
380 |
+
|
381 |
+
def __init__(self, priority, item):
|
382 |
+
self.priority = priority
|
383 |
+
self.item = item
|
384 |
+
|
385 |
+
def __eq__(self, other):
|
386 |
+
return self.priority == other.priority
|
387 |
+
|
388 |
+
def __lt__(self, other):
|
389 |
+
return self.priority < other.priority
|
390 |
+
def visual_search_queue(vsm, image, target_object_name, current_patch, search_path, queue, smallest_size=224, confidence_high=0.5, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0):
|
391 |
+
current_patch_bbox = current_patch['bbox']
|
392 |
+
current_patch_scale_level = current_patch['scale_level']
|
393 |
+
|
394 |
+
image_patch = image.crop((int(current_patch_bbox[0]), int(current_patch_bbox[1]), int(current_patch_bbox[0]+current_patch_bbox[2]), int(current_patch_bbox[1]+current_patch_bbox[3])))
|
395 |
+
# whehter we can detect the target object on the current image patch
|
396 |
+
question = "Please locate the {} in this image.".format(target_object_name)
|
397 |
+
pred_bboxes, pred_logits, target_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='detection')
|
398 |
+
if len(pred_logits) > 0:
|
399 |
+
top_index = pred_logits.view(-1).argmax()
|
400 |
+
top_logit = pred_logits.view(-1).max()
|
401 |
+
final_bbox = pred_bboxes[top_index].view(4)
|
402 |
+
final_bbox = final_bbox * torch.Tensor([image_patch.width, image_patch.height, image_patch.width, image_patch.height])
|
403 |
+
final_bbox[:2] -= final_bbox[2:] / 2
|
404 |
+
if top_logit > confidence_high:
|
405 |
+
search_path[-1]['detection_result'] = final_bbox
|
406 |
+
# only return multiple detected instances on the whole image
|
407 |
+
if len(search_path) == 1:
|
408 |
+
all_valid_boxes = pred_bboxes[pred_logits.view(-1)>0.5].view(-1, 4)
|
409 |
+
all_valid_boxes = all_valid_boxes * torch.Tensor([[image_patch.width, image_patch.height, image_patch.width, image_patch.height]])
|
410 |
+
all_valid_boxes[:, :2] -= all_valid_boxes[:, 2:] / 2
|
411 |
+
return True, search_path, all_valid_boxes
|
412 |
+
return True, search_path, None
|
413 |
+
else:
|
414 |
+
search_path[-1]['temp_detection_result'] = (top_logit, final_bbox)
|
415 |
+
|
416 |
+
### current patch is already the smallest unit
|
417 |
+
if min(current_patch_bbox[2], current_patch_bbox[3]) <= smallest_size:
|
418 |
+
return False, search_path, None
|
419 |
+
|
420 |
+
target_cue_heatmap = target_cue_heatmap.view(current_patch_bbox[3], current_patch_bbox[2], 1)
|
421 |
+
score_max = target_cue_heatmap.max().item()
|
422 |
+
# check whether the target cue is prominent
|
423 |
+
threshold = max(target_cue_threshold_minimum, target_cue_threshold*(target_cue_threshold_decay)**(current_patch_scale_level-1))
|
424 |
+
if score_max > threshold:
|
425 |
+
target_cue_heatmap = normalize_score(target_cue_heatmap)
|
426 |
+
final_heatmap = target_cue_heatmap
|
427 |
+
else:
|
428 |
+
question = "According to the common sense knowledge and possible visual cues, what is the most likely location of the {} in the image?".format(target_object_name)
|
429 |
+
vqa_results = vsm.inference(copy.deepcopy(image_patch), question, mode='vqa')
|
430 |
+
|
431 |
+
possible_location_phrase = vqa_results.split('most likely to appear')[-1].strip()
|
432 |
+
if possible_location_phrase.endswith('.'):
|
433 |
+
possible_location_phrase = possible_location_phrase[:-1]
|
434 |
+
possible_location_phrase = possible_location_phrase.split(target_object_name)[-1]
|
435 |
+
noun_chunks = extract_noun_chunks(possible_location_phrase)
|
436 |
+
if len(noun_chunks) == 1:
|
437 |
+
possible_location_phrase = noun_chunks[0]
|
438 |
+
else:
|
439 |
+
possible_location_phrase = "region {}".format(possible_location_phrase)
|
440 |
+
question = "Please locate the {} in this image.".format(possible_location_phrase)
|
441 |
+
context_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='segmentation').view(current_patch_bbox[3], current_patch_bbox[2], 1)
|
442 |
+
context_cue_heatmap = normalize_score(context_cue_heatmap)
|
443 |
+
final_heatmap = context_cue_heatmap
|
444 |
+
|
445 |
+
current_patch_index = len(search_path)-1
|
446 |
+
if score_max <= threshold:
|
447 |
+
search_path[current_patch_index]['context_cue'] = vqa_results + "#" + possible_location_phrase
|
448 |
+
search_path[current_patch_index]['final_heatmap'] = final_heatmap.cpu().numpy()
|
449 |
+
|
450 |
+
### split the current patch into 4 sub-patches
|
451 |
+
basic_sub_patches, sub_patch_width, sub_patch_height = get_sub_patches(current_patch_bbox, *split_4subpatches(current_patch_bbox))
|
452 |
+
|
453 |
+
tmp_patch = current_patch
|
454 |
+
basic_sub_scores = [0]*len(basic_sub_patches)
|
455 |
+
while True:
|
456 |
+
tmp_score_heatmap = tmp_patch['final_heatmap']
|
457 |
+
tmp_sub_scores = get_subpatch_scores(tmp_score_heatmap, tmp_patch['bbox'], basic_sub_patches)
|
458 |
+
basic_sub_scores = [basic_sub_scores[patch_i]+tmp_sub_scores[patch_i]/(4**tmp_patch['scale_level']) for patch_i in range(len(basic_sub_scores))]
|
459 |
+
if tmp_patch['parent_index'] == -1:
|
460 |
+
break
|
461 |
+
else:
|
462 |
+
tmp_patch = search_path[tmp_patch['parent_index']]
|
463 |
+
|
464 |
+
sub_patches = basic_sub_patches
|
465 |
+
sub_scores = basic_sub_scores
|
466 |
+
|
467 |
+
for sub_patch, sub_score in zip(sub_patches, sub_scores):
|
468 |
+
new_patch_info = dict()
|
469 |
+
new_patch_info['bbox'] = sub_patch
|
470 |
+
new_patch_info['scale_level'] = current_patch_scale_level + 1
|
471 |
+
new_patch_info['score'] = sub_score
|
472 |
+
new_patch_info['parent_index'] = current_patch_index
|
473 |
+
queue.put(Prioritize(-new_patch_info['score'], new_patch_info))
|
474 |
+
|
475 |
+
while(not queue.empty()):
|
476 |
+
patch_chosen = queue.get().item
|
477 |
+
search_path.append(patch_chosen)
|
478 |
+
success, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, patch_chosen, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
|
479 |
+
if success:
|
480 |
+
return success, search_path, all_valid_boxes
|
481 |
+
return False, search_path, None
|
482 |
+
|
483 |
+
|
484 |
+
def visual_search(vsm, image, target_object_name, target_bbox, smallest_size, confidence_high=0.5, confidence_low=0.3, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0, visualize=False, save_path=None):
|
485 |
+
if visualize:
|
486 |
+
assert save_path is not None
|
487 |
+
init_patch = dict()
|
488 |
+
init_patch['bbox'] = [0,0,image.width,image.height]
|
489 |
+
init_patch['scale_level'] = 1
|
490 |
+
init_patch['score'] = None
|
491 |
+
init_patch['parent_index'] = -1
|
492 |
+
search_path = [init_patch]
|
493 |
+
|
494 |
+
queue = PriorityQueue()
|
495 |
+
search_successful, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, init_patch, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
|
496 |
+
path_length = len(search_path)
|
497 |
+
final_step = search_path[-1]
|
498 |
+
if not search_successful:
|
499 |
+
# if no target is found with confidence passing confidence_high, select the target with the highest confidence during search and compare its confidence with confidence_low
|
500 |
+
max_logit = 0
|
501 |
+
final_step = None
|
502 |
+
path_length = 0
|
503 |
+
for i, search_step in enumerate(search_path):
|
504 |
+
if 'temp_detection_result' in search_step:
|
505 |
+
if search_step['temp_detection_result'][0] > max_logit:
|
506 |
+
max_logit = search_step['temp_detection_result'][0]
|
507 |
+
final_step = search_step
|
508 |
+
path_length = i+1
|
509 |
+
final_step['detection_result'] = final_step['temp_detection_result'][1]
|
510 |
+
if max_logit >= confidence_low:
|
511 |
+
search_successful = True
|
512 |
+
if visualize:
|
513 |
+
vis_path_length = path_length if search_successful else len(search_path)
|
514 |
+
visualize_search_path(image, search_path, vis_path_length, target_bbox, target_object_name, save_path)
|
515 |
+
del queue
|
516 |
+
return final_step, path_length, search_successful, all_valid_boxes
|
517 |
+
|
518 |
+
|
519 |
+
|
520 |
+
def main(args):
|
521 |
+
args = parse_args(args)
|
522 |
+
vsm = VSM(args)
|
523 |
+
|
524 |
+
benchmark_folder = args.benchmark_folder
|
525 |
+
|
526 |
+
acc_list = []
|
527 |
+
search_path_length_list = []
|
528 |
+
|
529 |
+
for test_type in ['direct_attributes', 'relative_position']:
|
530 |
+
folder = os.path.join(benchmark_folder, test_type)
|
531 |
+
output_folder = None
|
532 |
+
if args.visualization:
|
533 |
+
output_folder = os.path.join(args.output_path, test_type)
|
534 |
+
os.makedirs(output_folder, exist_ok=True)
|
535 |
+
image_files = filter(lambda file: '.json' not in file, os.listdir(folder))
|
536 |
+
for image_file in tqdm.tqdm(image_files):
|
537 |
+
image_path = os.path.join(folder, image_file)
|
538 |
+
annotation_path = image_path.split('.')[0] + '.json'
|
539 |
+
annotation = json.load(open(annotation_path))
|
540 |
+
bboxs = annotation['bbox']
|
541 |
+
object_names = annotation['target_object']
|
542 |
+
|
543 |
+
for i, (gt_bbox, object_name) in enumerate(zip(bboxs, object_names)):
|
544 |
+
image = Image.open(image_path).convert('RGB')
|
545 |
+
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
|
546 |
+
if args.visualization:
|
547 |
+
vis_path = os.path.join(output_folder, "{}_{}".format(image_file.split('.')[0],i))
|
548 |
+
else:
|
549 |
+
vis_path = None
|
550 |
+
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=gt_bbox, smallest_size=smallest_size, confidence_high=args.confidence_high, confidence_low=args.confidence_low, target_cue_threshold=args.target_cue_threshold, target_cue_threshold_decay=args.target_cue_threshold_decay, target_cue_threshold_minimum=args.target_cue_threshold_minimum, save_path=vis_path, visualize=args.visualization)
|
551 |
+
if search_successful:
|
552 |
+
search_bbox = final_step['detection_result']
|
553 |
+
search_final_patch = final_step['bbox']
|
554 |
+
search_bbox[0] += search_final_patch[0]
|
555 |
+
search_bbox[1] += search_final_patch[1]
|
556 |
+
iou_i = iou(search_bbox, gt_bbox).item()
|
557 |
+
det_acc = 1.0 if iou_i > 0.5 else 0.0
|
558 |
+
acc_list.append(det_acc)
|
559 |
+
search_path_length_list.append(path_length)
|
560 |
+
else:
|
561 |
+
acc_list.append(0)
|
562 |
+
search_path_length_list.append(0)
|
563 |
+
print('Avg search path length:', np.mean([search_path_length_list[i] for i in range(len(search_path_length_list)) if acc_list[i]]))
|
564 |
+
print('Top 1 Acc:', np.mean(acc_list))
|
565 |
+
|
566 |
+
if __name__ == "__main__":
|
567 |
+
main(sys.argv[1:])
|
vstar_bench_eval.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm
|
5 |
+
from collections import defaultdict
|
6 |
+
from copy import deepcopy
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
|
13 |
+
from LLaVA.llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
14 |
+
from LLaVA.llava.conversation import conv_templates, SeparatorStyle
|
15 |
+
from LLaVA.llava.model.builder import load_pretrained_model
|
16 |
+
from LLaVA.llava.utils import disable_torch_init
|
17 |
+
from LLaVA.llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_image_object_token
|
18 |
+
|
19 |
+
from visual_search import parse_args, VSM, visual_search
|
20 |
+
|
21 |
+
def normalize_bbox(bbox, image_width, image_height):
|
22 |
+
normalized_bbox = [bbox[0]/image_width, bbox[1]/image_height, (bbox[0]+bbox[2])/image_width, (bbox[1]+bbox[3])/image_height]
|
23 |
+
normalized_bbox = [np.clip(_, 0, 1) for _ in normalized_bbox]
|
24 |
+
return normalized_bbox
|
25 |
+
def expand2square(pil_img, background_color):
|
26 |
+
width, height = pil_img.size
|
27 |
+
if width == height:
|
28 |
+
return pil_img, 0, 0
|
29 |
+
elif width > height:
|
30 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
31 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
32 |
+
return result, 0, (width - height) // 2
|
33 |
+
else:
|
34 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
35 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
36 |
+
return result, (height - width) // 2, 0
|
37 |
+
|
38 |
+
class VQA_LLM:
|
39 |
+
def __init__(self, args):
|
40 |
+
disable_torch_init()
|
41 |
+
model_path = args.vqa_model_path
|
42 |
+
model_name = get_model_name_from_path(model_path)
|
43 |
+
model_name += 'llava'
|
44 |
+
model_base = None
|
45 |
+
device_map = "auto"
|
46 |
+
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(model_path, model_base, model_name)
|
47 |
+
self.conv_type = args.conv_type
|
48 |
+
|
49 |
+
def get_patch(self, bbox, image_width, image_height, patch_size=224, patch_scale=None):
|
50 |
+
object_width = int(np.ceil(bbox[2]))
|
51 |
+
object_height = int(np.ceil(bbox[3]))
|
52 |
+
|
53 |
+
object_center_x = int(bbox[0] + bbox[2]/2)
|
54 |
+
object_center_y = int(bbox[1] + bbox[3]/2)
|
55 |
+
|
56 |
+
if patch_scale is None:
|
57 |
+
patch_width = max(object_width, patch_size)
|
58 |
+
patch_height = max(object_height, patch_size)
|
59 |
+
else:
|
60 |
+
patch_width = int(object_width*patch_scale)
|
61 |
+
patch_height = int(object_height*patch_scale)
|
62 |
+
|
63 |
+
left = max(0, object_center_x-patch_width//2)
|
64 |
+
right = min(left+patch_width, image_width)
|
65 |
+
|
66 |
+
top = max(0, object_center_y-patch_height//2)
|
67 |
+
bottom = min(top+patch_height, image_height)
|
68 |
+
|
69 |
+
return [left, top, right, bottom]
|
70 |
+
|
71 |
+
def get_object_crop(self, image, bbox, patch_scale):
|
72 |
+
resized_bbox = self.get_patch(bbox, image.width, image.height, patch_scale=patch_scale)
|
73 |
+
object_crop = image.crop((resized_bbox[0], resized_bbox[1], resized_bbox[2], resized_bbox[3]))
|
74 |
+
object_crop = object_crop.resize((self.image_processor.crop_size['width'],self.image_processor.crop_size['height']))
|
75 |
+
object_crop = self.image_processor.preprocess(object_crop, return_tensors='pt')['pixel_values'][0]
|
76 |
+
return object_crop
|
77 |
+
|
78 |
+
@torch.inference_mode()
|
79 |
+
def free_form_inference(self, image, question, temperature=0, top_p=None, num_beams=1, max_new_tokens=200, object_crops=None, images_long=None, objects_long=None):
|
80 |
+
conv = conv_templates[self.conv_type].copy()
|
81 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
|
82 |
+
conv.append_message(conv.roles[0], qs)
|
83 |
+
conv.append_message(conv.roles[1], None)
|
84 |
+
prompt = conv.get_prompt()
|
85 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
86 |
+
keywords = [stop_str]
|
87 |
+
input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
88 |
+
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
89 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
|
90 |
+
|
91 |
+
output_ids = self.model.generate(
|
92 |
+
input_ids,
|
93 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
94 |
+
object_features=object_crops.half().cuda() if object_crops is not None else None,
|
95 |
+
images_long = images_long,
|
96 |
+
objects_long = objects_long,
|
97 |
+
do_sample= True if temperature > 0 else False,
|
98 |
+
num_beams=num_beams,
|
99 |
+
temperature=temperature,
|
100 |
+
top_p = top_p,
|
101 |
+
max_new_tokens=max_new_tokens,
|
102 |
+
use_cache=True,
|
103 |
+
stopping_criteria=[stopping_criteria])
|
104 |
+
|
105 |
+
input_token_len = input_ids.shape[1]
|
106 |
+
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
107 |
+
if n_diff_input_output > 0:
|
108 |
+
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
109 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
110 |
+
outputs = outputs.strip()
|
111 |
+
if outputs.endswith(stop_str):
|
112 |
+
outputs = outputs[:-len(stop_str)]
|
113 |
+
outputs = outputs.strip()
|
114 |
+
return outputs
|
115 |
+
|
116 |
+
@torch.inference_mode()
|
117 |
+
def multiple_choices_inference(self, image, question, options, object_crops=None, images_long=None, objects_long=None):
|
118 |
+
conv = conv_templates[self.conv_type].copy()
|
119 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + question
|
120 |
+
conv.append_message(conv.roles[0], qs)
|
121 |
+
conv.append_message(conv.roles[1], None)
|
122 |
+
prompt = conv.get_prompt()
|
123 |
+
|
124 |
+
question_input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
125 |
+
image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
126 |
+
|
127 |
+
output_question = self.model(
|
128 |
+
question_input_ids,
|
129 |
+
use_cache=True,
|
130 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
131 |
+
object_features=object_crops.half().cuda() if object_crops is not None else None,
|
132 |
+
images_long = images_long,
|
133 |
+
objects_long = objects_long)
|
134 |
+
|
135 |
+
question_logits = output_question.logits
|
136 |
+
question_past_key_values = output_question.past_key_values
|
137 |
+
|
138 |
+
loss_list = []
|
139 |
+
|
140 |
+
for option in options:
|
141 |
+
conv = conv_templates[self.conv_type].copy()
|
142 |
+
conv.append_message(conv.roles[0], qs)
|
143 |
+
conv.append_message(conv.roles[1], option)
|
144 |
+
full_prompt = conv.get_prompt()
|
145 |
+
|
146 |
+
full_input_ids = tokenizer_image_object_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
147 |
+
option_answer_input_ids = full_input_ids[:, question_input_ids.shape[1]:]
|
148 |
+
|
149 |
+
output_option = self.model(input_ids=option_answer_input_ids,
|
150 |
+
use_cache=True,
|
151 |
+
attention_mask=torch.ones(1, question_logits.shape[1]+option_answer_input_ids.shape[1], device=full_input_ids.device),
|
152 |
+
past_key_values=question_past_key_values)
|
153 |
+
|
154 |
+
logits = torch.cat([question_logits[:, -1:], output_option.logits[:, :-1]], 1)
|
155 |
+
|
156 |
+
loss_fct = CrossEntropyLoss()
|
157 |
+
logits = logits.view(-1, self.model.config.vocab_size)
|
158 |
+
labels = option_answer_input_ids.view(-1)
|
159 |
+
loss = loss_fct(logits, labels)
|
160 |
+
|
161 |
+
loss_list.append(loss)
|
162 |
+
|
163 |
+
option_chosen = torch.stack(loss_list).argmin()
|
164 |
+
|
165 |
+
return option_chosen.cpu().item()
|
166 |
+
|
167 |
+
|
168 |
+
def eval_model(args):
|
169 |
+
# init VQA LLM
|
170 |
+
vqa_llm = VQA_LLM(args)
|
171 |
+
# init VSM
|
172 |
+
vsm_args = parse_args({})
|
173 |
+
vsm_args.version = args.vsm_model_path
|
174 |
+
vsm = VSM(vsm_args)
|
175 |
+
|
176 |
+
results = {}
|
177 |
+
per_type_acc = defaultdict(list)
|
178 |
+
all_acc = []
|
179 |
+
|
180 |
+
missing_objects_msg = "Sorry, I can not answer the question. Some visual information about the following objects is missing or unclear:"
|
181 |
+
focus_msg = "Additional visual information to focus on: "
|
182 |
+
for test_type in ['direct_attributes', 'relative_position']:
|
183 |
+
results[test_type] = []
|
184 |
+
folder = os.path.join(args.benchmark_folder, test_type)
|
185 |
+
image_files = list(filter(lambda file: '.json' not in file, os.listdir(folder)))
|
186 |
+
for image_file in tqdm(image_files):
|
187 |
+
result_single_sample = {}
|
188 |
+
image_path = os.path.join(folder, image_file)
|
189 |
+
annotation_path = image_path.split('.')[0] + '.json'
|
190 |
+
image = Image.open(image_path).convert('RGB')
|
191 |
+
annotation = json.load(open(annotation_path))
|
192 |
+
image, _, _ = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
|
193 |
+
|
194 |
+
question = annotation['question']
|
195 |
+
# generate free-form response to check whether visual search needs to be activated
|
196 |
+
prediction = vqa_llm.free_form_inference(image, question)
|
197 |
+
missing_objects = []
|
198 |
+
if missing_objects_msg in prediction:
|
199 |
+
missing_objects = prediction.split(missing_objects_msg)[-1]
|
200 |
+
if missing_objects.endswith('.'):
|
201 |
+
missing_objects = missing_objects[:-1]
|
202 |
+
missing_objects = missing_objects.split(',')
|
203 |
+
missing_objects = [missing_object.strip() for missing_object in missing_objects]
|
204 |
+
|
205 |
+
search_result = []
|
206 |
+
if len(missing_objects) > 0:
|
207 |
+
# visual search
|
208 |
+
for object_name in missing_objects:
|
209 |
+
image = Image.open(image_path).convert('RGB')
|
210 |
+
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
|
211 |
+
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=None, smallest_size=smallest_size)
|
212 |
+
if all_valid_boxes is not None:
|
213 |
+
# might exist multiple target instances
|
214 |
+
for search_bbox in all_valid_boxes:
|
215 |
+
search_final_patch = final_step['bbox']
|
216 |
+
search_bbox[0] += search_final_patch[0]
|
217 |
+
search_bbox[1] += search_final_patch[1]
|
218 |
+
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
|
219 |
+
else:
|
220 |
+
search_bbox = final_step['detection_result']
|
221 |
+
search_final_patch = final_step['bbox']
|
222 |
+
search_bbox[0] += search_final_patch[0]
|
223 |
+
search_bbox[1] += search_final_patch[1]
|
224 |
+
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
|
225 |
+
# predict the multiple-choice option
|
226 |
+
options = annotation['options']
|
227 |
+
image = Image.open(image_path).convert('RGB')
|
228 |
+
if len(missing_objects) > 0:
|
229 |
+
object_names = [_['name'] for _ in search_result]
|
230 |
+
bboxs = deepcopy([_['bbox'] for _ in search_result])
|
231 |
+
if len(object_names) <= 2:
|
232 |
+
images_long = [False]
|
233 |
+
objects_long = [True]*len(object_names)
|
234 |
+
else:
|
235 |
+
images_long = [False]
|
236 |
+
objects_long = [False]*len(object_names)
|
237 |
+
object_crops = []
|
238 |
+
for bbox in bboxs:
|
239 |
+
object_crop = vqa_llm.get_object_crop(image, bbox, patch_scale=1.2)
|
240 |
+
object_crops.append(object_crop)
|
241 |
+
object_crops = torch.stack(object_crops, 0)
|
242 |
+
image, left, top = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
|
243 |
+
bbox_list = []
|
244 |
+
for bbox in bboxs:
|
245 |
+
bbox[0] += left
|
246 |
+
bbox[1] += top
|
247 |
+
bbox_list.append(bbox)
|
248 |
+
bbox_list = [normalize_bbox(bbox, image.width, image.height) for bbox in bbox_list]
|
249 |
+
cur_focus_msg = focus_msg
|
250 |
+
for i, (object_name, bbox) in enumerate(zip(object_names, bbox_list)):
|
251 |
+
cur_focus_msg = cur_focus_msg + "{} <object> at location [{:.3f},{:.3f},{:.3f},{:.3f}]".format(object_name, bbox[0], bbox[1], bbox[2], bbox[3])
|
252 |
+
if i != len(bbox_list)-1:
|
253 |
+
cur_focus_msg = cur_focus_msg+"; "
|
254 |
+
else:
|
255 |
+
cur_focus_msg = cur_focus_msg +'.'
|
256 |
+
question_with_focus = cur_focus_msg+"\n"+question
|
257 |
+
option_chosen = vqa_llm.multiple_choices_inference(image, question_with_focus, options, object_crops, images_long=images_long, objects_long=objects_long)
|
258 |
+
else:
|
259 |
+
option_chosen = vqa_llm.multiple_choices_inference(image, question, options)
|
260 |
+
|
261 |
+
correct = 1 if option_chosen==0 else 0
|
262 |
+
per_type_acc[test_type].append(correct)
|
263 |
+
all_acc.append(correct)
|
264 |
+
|
265 |
+
result_single_sample['question'] = question
|
266 |
+
result_single_sample['options'] = options
|
267 |
+
result_single_sample['image'] = image_file
|
268 |
+
result_single_sample['prediction_freeform'] = prediction
|
269 |
+
result_single_sample['missing_objects'] = missing_objects
|
270 |
+
result_single_sample['search_result'] = search_result
|
271 |
+
result_single_sample['option_chosen'] = option_chosen
|
272 |
+
result_single_sample['correct'] = correct
|
273 |
+
results[test_type].append(result_single_sample)
|
274 |
+
|
275 |
+
print(test_type, np.mean(per_type_acc[test_type]))
|
276 |
+
|
277 |
+
print(np.mean(all_acc))
|
278 |
+
|
279 |
+
with open(args.output_path, 'w') as f:
|
280 |
+
json.dump(results, f, indent=4)
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
parser = argparse.ArgumentParser()
|
284 |
+
parser.add_argument("--vqa-model-path", type=str, default="craigwu/seal_vqa_7b")
|
285 |
+
parser.add_argument("--vqa-model-base", type=str, default=None)
|
286 |
+
parser.add_argument("--conv_type", default="v1", type=str,)
|
287 |
+
parser.add_argument("--benchmark-folder", type=str, default="vstar_bench")
|
288 |
+
parser.add_argument("--vsm-model-path", type=str, default="craigwu/seal_vsm_7b")
|
289 |
+
parser.add_argument("--output-path", type=str, default="eval_result.json")
|
290 |
+
parser.add_argument("--minimum_size_scale", default=4.0, type=float, help="minimum sub-image scale for the termination of search")
|
291 |
+
parser.add_argument("--minimum_size", default=224, type=int, help="minimum sub-image size for the termination of search")
|
292 |
+
|
293 |
+
args = parser.parse_args()
|
294 |
+
eval_model(args)
|