File size: 35,383 Bytes
8d1858d
 
 
 
 
 
 
 
 
 
 
4f7f656
8d1858d
4f7f656
 
 
bb016b3
8d1858d
a7a6d88
127e5e0
 
 
 
 
8d1858d
 
6ac02a9
8d1858d
 
 
 
127e5e0
8d1858d
 
6ac02a9
127e5e0
6ac02a9
127e5e0
 
6ac02a9
a7a6d88
bb016b3
127e5e0
 
 
 
be95ded
c2a3849
be95ded
a7a6d88
 
 
 
 
 
be95ded
a7a6d88
 
 
8d1858d
 
 
 
 
 
 
 
 
6ac02a9
 
 
 
8d1858d
 
 
 
 
 
 
3540807
8d1858d
 
127e5e0
8d1858d
 
127e5e0
 
8d1858d
 
 
 
 
6ac02a9
127e5e0
 
8d1858d
 
 
 
 
 
127e5e0
 
8d1858d
 
 
be95ded
8d1858d
 
 
6ac02a9
8d1858d
127e5e0
be95ded
bb016b3
 
 
 
127e5e0
bb016b3
 
be95ded
 
127e5e0
 
 
 
 
 
 
be95ded
 
 
 
127e5e0
bb016b3
be95ded
 
 
 
 
 
 
 
 
 
127e5e0
 
 
 
 
 
be95ded
127e5e0
be95ded
 
127e5e0
 
 
 
 
be95ded
 
 
 
127e5e0
 
 
be95ded
127e5e0
8d1858d
be95ded
8d1858d
bb016b3
8d1858d
bb016b3
8d1858d
9348229
127e5e0
 
be95ded
127e5e0
be95ded
c2a3849
 
 
 
 
 
 
 
be95ded
127e5e0
c2a3849
 
127e5e0
 
be95ded
127e5e0
be95ded
8d1858d
be95ded
8d1858d
be95ded
c2a3849
127e5e0
 
8d1858d
be95ded
 
 
 
 
 
 
 
 
 
6ac02a9
127e5e0
 
be95ded
 
6ac02a9
8d1858d
4f7f656
f6b95b3
127e5e0
f6b95b3
 
 
 
 
6ac02a9
f6b95b3
bb016b3
 
 
 
 
 
 
127e5e0
bb016b3
be95ded
 
 
bb016b3
 
 
be95ded
bb016b3
 
 
 
 
 
 
 
 
 
 
127e5e0
bb016b3
127e5e0
bb016b3
127e5e0
bb016b3
 
 
127e5e0
bb016b3
127e5e0
bb016b3
127e5e0
bb016b3
 
127e5e0
bb016b3
127e5e0
4f7f656
127e5e0
be95ded
bb016b3
 
 
127e5e0
 
bb016b3
 
 
 
 
be95ded
bb016b3
6ac02a9
f6b95b3
127e5e0
be95ded
127e5e0
 
6ac02a9
8d1858d
127e5e0
8d1858d
 
 
 
 
 
6ac02a9
 
 
 
 
8d1858d
 
 
 
 
 
be95ded
8d1858d
 
6ac02a9
a7a6d88
8d1858d
 
 
 
 
6ac02a9
8d1858d
 
 
 
 
be95ded
8d1858d
 
 
 
 
 
 
 
 
 
 
 
 
 
be95ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7f656
127e5e0
 
be95ded
 
bb016b3
 
be95ded
4f7f656
3540807
bb016b3
be95ded
 
 
 
 
 
 
 
8d1858d
 
 
127e5e0
be95ded
3540807
 
8d1858d
bb016b3
6ac02a9
bb016b3
 
6ac02a9
 
 
3540807
6ac02a9
 
3540807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7f656
3540807
6ac02a9
 
 
 
3540807
 
 
 
 
 
6ac02a9
3540807
8d1858d
4f7f656
3540807
4f7f656
3540807
8d1858d
95abdee
be95ded
4f7f656
6ac02a9
be95ded
 
 
6ac02a9
 
 
8d1858d
 
6ac02a9
bb016b3
8d1858d
be95ded
9348229
6ac02a9
127e5e0
6ac02a9
 
 
4f7f656
 
 
6ac02a9
8d1858d
4f7f656
be95ded
 
4f7f656
8d1858d
127e5e0
8d1858d
bb016b3
8d1858d
bb016b3
6ac02a9
 
 
 
a7a6d88
8d1858d
be95ded
6ac02a9
 
 
 
127e5e0
8d1858d
 
6ac02a9
bb016b3
6ac02a9
8d1858d
 
6ac02a9
3540807
4f7f656
8d1858d
 
127e5e0
be95ded
127e5e0
8d1858d
 
be95ded
8d1858d
 
bb016b3
 
127e5e0
 
bb016b3
 
8d1858d
bb016b3
 
8d1858d
bb016b3
 
127e5e0
 
bb016b3
 
127e5e0
be95ded
127e5e0
 
 
bb016b3
4f7f656
bb016b3
8d1858d
127e5e0
be95ded
127e5e0
bb016b3
8d1858d
 
127e5e0
8d1858d
a7a6d88
be95ded
4f7f656
8d1858d
bb016b3
127e5e0
6ac02a9
 
 
 
bb016b3
8d1858d
bb016b3
 
6ac02a9
 
 
 
bb016b3
8d1858d
bb016b3
127e5e0
6ac02a9
 
 
 
bb016b3
8d1858d
be95ded
 
bb016b3
8d1858d
127e5e0
be95ded
bb016b3
6ac02a9
4f7f656
a7a6d88
4f7f656
6ac02a9
127e5e0
6ac02a9
 
4f7f656
 
 
 
127e5e0
8d1858d
 
6ac02a9
8d1858d
 
be95ded
4f7f656
6ac02a9
9348229
4f7f656
 
 
 
9348229
4f7f656
 
9348229
a7a6d88
9348229
6ac02a9
 
8d1858d
bb016b3
be95ded
4f7f656
8d1858d
be95ded
f6b95b3
8d1858d
4f7f656
 
8d1858d
be95ded
8d1858d
 
 
be95ded
8d1858d
 
 
 
 
 
f6b95b3
8d1858d
6ac02a9
 
8d1858d
 
be95ded
8d1858d
 
be95ded
4f7f656
a7a6d88
f6b95b3
8d1858d
4f7f656
8d1858d
127e5e0
be95ded
8d1858d
6ac02a9
 
8d1858d
6ac02a9
be95ded
a7a6d88
6ac02a9
 
8d1858d
4f7f656
 
8d1858d
6ac02a9
 
8d1858d
f6b95b3
8d1858d
6ac02a9
8d1858d
 
6ac02a9
8d1858d
6ac02a9
8d1858d
 
 
 
 
 
 
 
6ac02a9
 
8d1858d
 
 
127e5e0
 
6ac02a9
4f7f656
8d1858d
6ac02a9
127e5e0
8d1858d
a7a6d88
 
 
 
6ac02a9
8d1858d
4f7f656
a7a6d88
8d1858d
6ac02a9
a7a6d88
 
 
4f7f656
a7a6d88
 
 
 
 
 
 
 
 
 
 
 
8d1858d
 
 
6ac02a9
127e5e0
a7a6d88
127e5e0
6ac02a9
127e5e0
a7a6d88
127e5e0
6ac02a9
127e5e0
8d1858d
c2a3849
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import gradio as gr
import os
import time
import re
import random
import torch
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from typing import List, Dict, Any, Tuple
from PIL import Image
from transformers import pipeline
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from docx import Document
from pptx import Presentation
from io import BytesIO
import numpy as np

# --- CONFIGURATION & INITIALIZATION ---
# Use string 'cpu' or GPU index string/int like '0'
USER_DEVICE = "cpu"  # keep as "cpu" on CPU-only hosts; change to "0" for GPU 0
PIPELINE_DEVICE = -1 if str(USER_DEVICE).lower() == "cpu" else int(USER_DEVICE)
TORCH_DEVICE = torch.device("cuda") if torch.cuda.is_available() and PIPELINE_DEVICE != -1 else torch.device("cpu")

os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
AUDIO_DIR = "audio_outputs"
DOC_DIR = "doc_outputs"
if not os.path.exists(AUDIO_DIR):
    os.makedirs(AUDIO_DIR)
if not os.path.exists(DOC_DIR):
    os.makedirs(DOC_DIR)

REPO_ID = "cosmosai471/Luna-v3"
MODEL_FILE = "luna.gguf"
LOCAL_MODEL_PATH = MODEL_FILE

SYSTEM_PROMPT = (
    "You are Luna, a helpful and friendly AI assistant. For internal tracing you may place Intent/Confidence tags, "
    "but DO NOT expose these tags in the user-facing response. Any Intent/Confidence/Action metadata must be kept internal."
)

# --- TUNABLES / GUARDS ---
CONFIDENCE_THRESHOLD = 30         # trigger web-search fallback only under this confidence
STREAM_CHAR_LIMIT = 35000         # cap streaming characters
STREAM_ITER_LIMIT = 20000         # cap streaming iterations
MIN_MEANINGFUL_LENGTH = 20        # min length for file-generation prompts
IMAGE_MAX_SIDE = 1024            # resize images to this max side before sending to image pipeline

# safe destructor for Llama objects
def safe_del(self):
    try:
        if hasattr(self, "close") and callable(self.close):
            self.close()
    except Exception:
        pass

Llama.__del__ = safe_del

# --- MODEL LOADING ---
llm = None
try:
    print(f"Downloading {MODEL_FILE} from {REPO_ID}...")
    hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE, local_dir=".")
    if not os.path.exists(LOCAL_MODEL_PATH):
        raise FileNotFoundError(f"Download failed for {MODEL_FILE}")
    print("Initializing Llama...")
    llm = Llama(
        model_path=LOCAL_MODEL_PATH,
        n_ctx=8192,
        n_threads=4,
        n_batch=256,
        n_gpu_layers=0,
        verbose=False
    )
    print("βœ… Luna Model loaded successfully!")
except Exception as e:
    print(f"❌ Error loading Luna model: {e}")
    class DummyLLM:
        def create_completion(self, *args, **kwargs):
            yield {'choices': [{'text': '[Intent: qa_general][Confidence: 0] ERROR: Luna model failed to load. Check logs and resources.'}]}
    llm = DummyLLM()

# transformer's pipeline expects device int: -1 for CPU
stt_pipe = None
try:
    stt_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=PIPELINE_DEVICE)
    print(f"βœ… Loaded Whisper-base on device: {USER_DEVICE}")
except Exception as e:
    print(f"⚠️ Could not load Whisper. Voice chat disabled. Error: {e}")

image_pipe = None
try:
    VLM_MODEL_ID = "llava-hf/llava-1.5-7b-hf"
    image_pipe = pipeline("image-to-text", model=VLM_MODEL_ID, device=PIPELINE_DEVICE)
    print(f"βœ… Loaded {VLM_MODEL_ID} for image processing (device={USER_DEVICE}).")
except Exception as e:
    print(f"⚠️ Could not load VLM ({VLM_MODEL_ID}). Image chat disabled. Error: {e}")

img_gen_pipe = None
try:
    img_gen_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32)
    img_gen_pipe.to(TORCH_DEVICE)
    print(f"βœ… Loaded Stable Diffusion and moved to {TORCH_DEVICE}.")
except Exception as e:
    print(f"⚠️ Could not load Image Generation pipeline. Image generation disabled. Error: {e}")

# --- SANITIZERS & UTILITIES ---

def simulate_recording_delay():
    time.sleep(3)
    return None

def remove_bracketed_tags(text: str) -> str:
    """Remove bracketed tags like [Intent: ...] [Confidence: ...] exactly (safe)."""
    if not text:
        return ""
    text = re.sub(r'\[Intent:\s*[\w\-\_]+\]', '', text, flags=re.IGNORECASE)
    text = re.sub(r'\[Confidence:\s*\d{1,3}\]', '', text, flags=re.IGNORECASE)
    text = re.sub(r'\[Action:\s*[^\]]+\]', '', text, flags=re.IGNORECASE)
    return text

def remove_plain_tag_lines(text: str) -> str:
    """Remove whole lines that are just 'Intent: ...' or 'Confidence: ...' preserving inline content."""
    if not text:
        return ""
    text = re.sub(r'(?im)^\s*Intent\s*[:\-]\s*.*$', '', text)
    text = re.sub(r'(?im)^\s*Confidence\s*[:\-]\s*.*$', '', text)
    text = re.sub(r'(?im)^\s*Action\s*[:\-]\s*.*$', '', text)
    return text

def remove_word_number_dumps(text: str) -> str:
    """Remove big classifier dumps like 'greeting 99 2. goodbye 99' but try to preserve normal text.
    This removes sequences where a word token is followed immediately by 1-3 numbers and repeats (likely classifier logs).
    Only removes when they appear as standalone clusters (surrounded by line breaks or punctuation)."""
    if not text:
        return ""
    # find clusters between line boundaries or punctuation
    cluster_pattern = re.compile(r'(?:\n|^|[\(\[\{\.;:,\-\|>])\s*([a-zA-Z_\-]{2,40}(?:\s+\d{1,3}){1,4}(?:\s+[a-zA-Z_\-]{2,40}(?:\s+\d{1,3}){1,4})*)\s*(?:\n|$|[\)\]\}\.;:,\-\|<])', flags=re.IGNORECASE)
    def _strip_cluster(m):
        return '\n'  # replace cluster with a newline to preserve sentence boundaries
    text = cluster_pattern.sub(_strip_cluster, text)
    # remove leftover isolated numeric sequences (only small groups)
    text = re.sub(r'\b\d{2,3}(?:\s+\d{1,3})*\b', '', text)
    return text

def collapse_whitespace(text: str) -> str:
    if not text:
        return ""
    text = re.sub(r'\n\s*\n+', '\n\n', text)
    text = re.sub(r'[ \t]{2,}', ' ', text)
    return text.strip()

def moderate_sanitize_for_ui(raw: str) -> str:
    """
    Moderate sanitizer: removes bracketed tags, whole tag-lines, and classifier dumps (carefully),
    but otherwise preserves natural language content.
    """
    if not raw:
        return ""
    s = raw
    s = remove_bracketed_tags(s)
    s = remove_plain_tag_lines(s)
    s = remove_word_number_dumps(s)
    s = collapse_whitespace(s)
    # final quick guard to remove exact words 'Intent' or 'Confidence' if accidentally left alone
    s = re.sub(r'(?i)\bIntent\b', '', s)
    s = re.sub(r'(?i)\bConfidence\b', '', s)
    s = re.sub(r'(?i)\bAction\b', '', s)
    s = collapse_whitespace(s)
    return s.strip()

# web-search stub
def web_search_tool(query: str) -> str:
    time.sleep(1.2)
    print(f"Simulating Google Search fallback for: {query}")
    return f"\n\n🌐 **Web Search Results for '{query}':** I found supplemental info to help answer this."

def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
    """
    Internal: parse confidence if present (for logic only), but never display it. If fallback triggered,
    append web results to sanitized response. Uses moderate sanitizer to avoid eating valid content.
    """
    cleaned_for_logic = remove_bracketed_tags(raw_response_with_tags)
    confidence_match = re.search(r'\[Confidence:\s*([0-9]{1,3})\]', raw_response_with_tags, flags=re.IGNORECASE)
    if confidence_match:
        try:
            confidence_score = int(confidence_match.group(1))
            confidence_score = max(0, min(confidence_score, 100))
        except Exception:
            confidence_score = 0
    else:
        cleaned_no_tags = moderate_sanitize_for_ui(cleaned_for_logic)
        confidence_score = 10 if not cleaned_no_tags or len(cleaned_no_tags) < 30 else 85

    if confidence_score < CONFIDENCE_THRESHOLD:
        print(f"[internal] Low confidence ({confidence_score}%) detected -> using web fallback")
        supplement = web_search_tool(prompt)
        out = moderate_sanitize_for_ui(cleaned_for_logic)
        if not out:
            out = "I couldn't generate a reliable answer. " + moderate_sanitize_for_ui(supplement)
        else:
            out = out + "\n\n" + moderate_sanitize_for_ui(supplement)
    else:
        out = moderate_sanitize_for_ui(cleaned_for_logic)

    out = out or "Sorry β€” I couldn't produce a good answer. Could you rephrase or give more details?"
    return out

# --- IMAGE / VQA PROCESSING (robust + resize) ---

def _resize_image_keep_aspect(img: Image.Image, max_side: int) -> Image.Image:
    w, h = img.size
    if max(w, h) <= max_side:
        return img
    scale = max_side / float(max(w, h))
    new_w = int(w * scale)
    new_h = int(h * scale)
    return img.resize((new_w, new_h), Image.LANCZOS)

def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
    """
    Uses image_pipe to produce VQA text. Resizes image to avoid token/feature mismatch issues.
    Returns prompt-injection (safe) + success flag.
    """
    global image_pipe
    success = False
    if image_pipe is None:
        return f"[Image Processing Error: VLM model not loaded.] **User Query:** {message}", False

    image = None
    try:
        if isinstance(image_data_or_path, str):
            image = Image.open(image_data_or_path).convert("RGB")
        elif isinstance(image_data_or_path, np.ndarray):
            image = Image.fromarray(image_data_or_path).convert("RGB")
        else:
            try:
                image = Image.open(BytesIO(image_data_or_path)).convert("RGB")
            except Exception:
                image = None

        if image is None:
            return f"[Image Processing Error: Could not open image.] **User Query:** {message}", False

        # Resize defensively before passing to VLM pipeline (fixes token/features mismatch errors)
        image = _resize_image_keep_aspect(image, IMAGE_MAX_SIDE)

        vqa_prompt = f"USER: <image>\n{message}\nASSISTANT:"
        results = None
        try:
            # preferred signature
            results = image_pipe(image, prompt=vqa_prompt)
        except TypeError:
            try:
                results = image_pipe(image)
            except Exception as e:
                print(f"Image pipeline call failed: {e}")
                results = None
        except Exception as e:
            print(f"Image pipeline call error: {e}")
            results = None

        raw_text = ""
        if results is None:
            raw_text = ""
        elif isinstance(results, dict):
            raw_text = results.get("generated_text") or results.get("text") or ""
        elif isinstance(results, list):
            first = results[0]
            if isinstance(first, dict):
                raw_text = first.get("generated_text") or first.get("text") or ""
            elif isinstance(first, str):
                raw_text = first
        elif isinstance(results, str):
            raw_text = results
        else:
            try:
                raw_text = str(results)
            except Exception:
                raw_text = ""

        vqa_response = raw_text.split("ASSISTANT:")[-1].strip() if raw_text else ""
        vqa_response = moderate_sanitize_for_ui(vqa_response)

        if not vqa_response or len(vqa_response) < 10:
            vqa_response = (
                "VQA analysis didn't return a clear answer. The image might be unclear or the question ambiguous. "
                "Please re-upload a clearer image, crop to the subject, or give a short instruction about what you'd like answered."
            )
            success = False
        else:
            success = True

        prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {moderate_sanitize_for_ui(message)}"
        return prompt_injection, success

    except Exception as e:
        print(f"Image processing exception: {e}")
        return f"[Image Processing Error: {e}] **User Query:** {moderate_sanitize_for_ui(message)}", False

# --- AUDIO / TTS ---

def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
    if stt_pipe is None or not audio_file_path:
        error_msg = "Error: Whisper model failed to load or no audio recorded."
        return "", error_msg, gr.update(interactive=True), gr.update(value="↑", interactive=True, elem_classes=["circle-btn", "send-mode"]), False, gr.update(visible=False)
    try:
        transcribed_text = stt_pipe(audio_file_path)["text"]
        new_button_update = gr.update(value="↑", interactive=True, elem_classes=["circle-btn", "send-mode"])
        return (
            transcribed_text.strip(),
            f"πŸŽ™οΈ Transcribed: '{transcribed_text.strip()}'",
            gr.update(interactive=True),
            new_button_update,
            True,
            gr.update(visible=False)
        )
    except Exception as e:
        error_msg = f"Transcription Error: {e}"
        return "", error_msg, gr.update(interactive=True), gr.update(value="↑", interactive=True, elem_classes=["circle-btn", "send-mode"]), False, gr.update(visible=False)


def text_to_audio(text: str, is_voice_chat: bool) -> str or None:
    if not is_voice_chat:
        return None
    clean_text = re.sub(r'```.*?```|\[Image Processing Error:.*?\]|\*\*Web Search Results:.*?$|\(file=.*?\)', '', text, flags=re.DOTALL | re.MULTILINE)
    if len(clean_text.strip()) > 5:
        try:
            audio_output_path = os.path.join(AUDIO_DIR, f"luna_response_{random.randint(1000, 9999)}.mp3")
            tts = gTTS(text=clean_text.strip(), lang='en')
            tts.save(audio_output_path)
            return audio_output_path
        except Exception as e:
            print(f"gTTS Error: {e}")
            return None
    return None

# --- INTENT MAP & PARSING ---
INTENT_STATUS_MAP = {
    "code_generate": "Analyzing requirements and drafting code πŸ’»...",
    "code_explain": "Reviewing code logic and writing explanation πŸ’‘...",
    "qa_general": "Drafting comprehensive general answer ✍️...",
    "greeting": "Replying to greeting πŸ‘‹...",
    "vqa": "Analyzing VQA results and forming a final response 🧠...",
    "image_generate": "Generating image using Stable Diffusion (This may be slow on CPU) πŸ–ΌοΈ...",
    "doc_generate": "Generating content and formatting DOCX file πŸ“„...",
    "ppt_generate": "Generating content and formatting PPTX file πŸ“Š...",
    "open_camera": "Activating camera for image capture πŸ“Έ...",
    "open_google": "Simulating external search link generation πŸ”—...",
    "default": "Luna is thinking...",
}

# Additional keyword-based intent inference (helps when model doesn't include tags)
INTENT_KEYWORD_MAP = [
    (re.compile(r"\b(create|generate|make)\b.*\b(image|picture|photo|art)\b", flags=re.IGNORECASE), "image_generate"),
    (re.compile(r"\b(create|generate|make)\b.*\b(document|doc|report|letter|resume)\b", flags=re.IGNORECASE), "doc_generate"),
    (re.compile(r"\b(create|generate|make)\b.*\b(presentation|ppt|slides)\b", flags=re.IGNORECASE), "ppt_generate"),
]


def infer_intent_from_content(text: str) -> str:
    if not text:
        return "default"
    for patt, intent in INTENT_KEYWORD_MAP:
        if patt.search(text):
            return intent
    return "default"


def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
    """
    Internal parsing: returns (intent, status, cleaned_display_text).
    cleaned_display_text preserves content but strips tags/garbage moderately.
    If no explicit [Intent:] tag is found, infer intent from content_for_tool keywords.
    """
    intent_match = re.search(r'\[Intent:\s*([\w\-\_]+)\]', raw_response, re.IGNORECASE)
    intent = intent_match.group(1).lower() if intent_match else None
    if is_vqa_flow:
        intent = "vqa"

    cleaned_text = moderate_sanitize_for_ui(raw_response)
    # If no explicit intent from tags, try to infer from cleaned_text
    if not intent or intent == "default":
        inferred = infer_intent_from_content(cleaned_text)
        if inferred != "default":
            intent = inferred
    intent = intent or "default"

    status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
    return intent, status, cleaned_text

# --- FILE / IMAGE GENERATION ---

def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
    file_path = None
    try:
        if not content or len(content.strip()) < MIN_MEANINGFUL_LENGTH:
            history[-1]['content'] = (
                f"⚠️ I was asked to create a {file_type}, but I don't have enough details. "
                "Please provide a 1–2 sentence description of what the file should contain."
            )
            return history, None

        if file_type == "image":
            if img_gen_pipe is None:
                raise RuntimeError("Image generation model not loaded.")
            image = img_gen_pipe(content).images[0]
            file_filename = f"generated_img_{random.randint(1000, 9999)}.png"
            file_path = os.path.join(DOC_DIR, file_filename)
            image.save(file_path)
            display_content = f"πŸ–ΌοΈ **Image Generated!**\n\n[Download {file_filename}](file={file_path})"
        elif file_type == "doc":
            doc = Document()
            doc.add_heading('Luna Generated Document', 0)
            doc.add_paragraph(content)
            file_filename = f"generated_doc_{random.randint(1000, 9999)}.docx"
            file_path = os.path.join(DOC_DIR, file_filename)
            doc.save(file_path)
            display_content = f"πŸ“„ **Document Generated!** Summary:\n\n{content[:200]}...\n\n[Download {file_filename}](file={file_path})"
        elif file_type == "ppt":
            prs = Presentation()
            slide = prs.slides.add_slide(prs.slide_layouts[0])
            slide.shapes.title.text = "Luna Generated Presentation"
            try:
                slide.placeholders[1].text = content[:200] + "..."
            except Exception:
                pass
            file_filename = f"generated_ppt_{random.randint(1000, 9999)}.pptx"
            file_path = os.path.join(DOC_DIR, file_filename)
            prs.save(file_path)
            display_content = f"πŸ“Š **Presentation Generated!** Summary:\n\n{content[:200]}...\n\n[Download {file_filename}](file={file_path})"
        else:
            raise ValueError(f"Unknown file type: {file_type}")

        history[-1]['content'] = display_content
    except Exception as e:
        error_msg = f"❌ **Error generating {file_type.upper()}:** {e}. Check logs/libs."
        history[-1]['content'] = error_msg
        file_path = None
    return history, file_path

# --- CORE GENERATOR FUNCTION ---

def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
    """
    - assistant entry appended only when generation actually starts (no empty box).
    - streaming sanitized moderately to keep meaning while removing metadata.
    - when image is attached, VQA flow is strictly used (image model output injected to LLM).
    """
    if not history or history[-1]['role'] != 'user':
        yield history, False, "Error: Generator called in unexpected state (no user message found).", gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
        return

    last_user_index = len(history) - 1
    original_message = history[last_user_index]['content'] or ""

    # detect VQA flow: if image attached, force image flow
    is_vqa_flow = False
    if isinstance(image_input_data, str):
        is_vqa_flow = bool(image_input_data)
    elif isinstance(image_input_data, np.ndarray):
        is_vqa_flow = image_input_data.size > 0
    else:
        is_vqa_flow = image_input_data is not None

    vqa_success = False
    llm_input_message = original_message
    if is_vqa_flow:
        processed_message, vqa_success = process_image(image_input_data, original_message)
        history[last_user_index]['content'] = f"[IMAGE RECEIVED] {moderate_sanitize_for_ui(original_message)}"
        # ensure that LLM prompt includes VQA analysis and the user message
        llm_input_message = processed_message

    # build prompt
    prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
    for item in history[:-1]:
        role = item['role'].upper()
        content = item['content'] or ""
        if role == "ASSISTANT":
            prompt += f"LUNA: {content}\n"
        elif role == "USER":
            prompt += f"USER: {content}\n"
    prompt += f"USER: {llm_input_message}\nLUNA: "

    # append assistant entry now
    assistant_initial_text = "✨ Luna is starting to think..."
    history.append({"role": "assistant", "content": assistant_initial_text})

    yield history, stop_signal, assistant_initial_text, gr.update(value="", interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
    time.sleep(0.12)

    full_response = ""
    current_intent = "default"
    iter_count = 0

    try:
        stream = llm.create_completion(
            prompt=prompt, max_tokens=8192,
            stop=["USER:", "SYSTEM:", "</s>"],
            echo=False, stream=True, temperature=0.7
        )
    except Exception as e:
        err = f"❌ Error generating response: {e}"
        history[-1]['content'] = moderate_sanitize_for_ui(err)
        yield history, False, err, gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
        return

    # stream tokens; moderately sanitize and cap
    try:
        for output in stream:
            iter_count += 1
            if iter_count > STREAM_ITER_LIMIT:
                full_response += "\n\n[Stream aborted: iteration limit reached]"
                print("Stream aborted by iter limit.")
                break

            token = output["choices"][0].get("text", "")
            if not isinstance(token, str):
                token = str(token)
            full_response += token

            if len(full_response) > STREAM_CHAR_LIMIT:
                full_response = full_response[:STREAM_CHAR_LIMIT] + "\n\n[Truncated: length limit reached]"
                print("Stream truncated by char limit.")
                break

            current_intent, current_hint, interim = get_intent_status(full_response, is_vqa_flow and vqa_success)
            interim_ui = moderate_sanitize_for_ui(interim)
            if not interim_ui:
                interim_ui = "✨ Luna is forming a reply..."
            history[-1]['content'] = interim_ui

            yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()

    except Exception as e:
        _, _, salvage = get_intent_status(full_response, is_vqa_flow and vqa_success)
        salvage_ui = moderate_sanitize_for_ui(salvage) or f"⚠️ Streaming interrupted: {e}"
        history[-1]['content'] = salvage_ui
        yield history, False, f"⚠️ Streaming interrupted: {e}", gr.update(interactive=True), gr.update(value="↑", interactive=True), None, False, gr.update(visible=True), image_input_data, gr.update(), gr.update()
        return

    # post-process
    file_download_path = None
    _, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
    content_for_tool = moderate_sanitize_for_ui(content_for_tool)

    if current_intent == "image_generate":
        if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
            history[-1]['content'] = "I detected an image generation request but didn't get enough details. Please give a short description (e.g. 'red bicycle at sunrise, vivid colors')."
        else:
            history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
            yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
            history, file_download_path = generate_file_content(content_for_tool, history, "image")

    elif current_intent == "doc_generate":
        if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
            history[-1]['content'] = "I can create a document, but I need a 1–2 sentence description of what to include."
        else:
            history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
            yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
            history, file_download_path = generate_file_content(content_for_tool, history, "doc")

    elif current_intent == "ppt_generate":
        if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
            history[-1]['content'] = "I can make a short presentation β€” please give a title and 3–5 bullet points."
        else:
            history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
            yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop ⏹️", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
            history, file_download_path = generate_file_content(content_for_tool, history, "ppt")

    elif current_intent == "open_google":
        final_text = (content_for_tool or "").strip() + "\n\nπŸ”— **Action:** [Search Google](https://www.google.com/search?q=" + re.sub(r'\s+', '+', moderate_sanitize_for_ui(original_message)) + ")"
        history[-1]['content'] = moderate_sanitize_for_ui(final_text)

    elif current_intent == "open_camera":
        final_text = (content_for_tool or "").strip() + "\n\nπŸ“Έ **Action:** Use the 'Google Lens' button to capture an image."
        history[-1]['content'] = moderate_sanitize_for_ui(final_text)

    else:
        final_response_content = check_confidence_and_augment(full_response, original_message)
        history[-1]['content'] = final_response_content

    if not history[-1]['content'] or not str(history[-1]['content']).strip():
        history[-1]['content'] = "Sorry β€” I couldn't produce a useful response. Could you rephrase or add details?"

    audio_file_path = text_to_audio(history[-1]['content'], is_voice_chat)

    hint = "βœ… Response generated."
    yield history, False, hint, gr.update(interactive=True), gr.update(value="↑", interactive=True), audio_file_path, False, gr.update(visible=True), gr.update(value=None), gr.update(), file_download_path

# --- GRADIO WRAPPERS ---

def toggle_menu(current_visibility: bool) -> Tuple[bool, gr.update, gr.update, gr.update]:
    new_visibility = not current_visibility
    return new_visibility, gr.update(visible=new_visibility), gr.update(visible=False), gr.update(value="⬇️" if new_visibility else "βž•")


def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
    has_text = bool(user_message and user_message.strip())
    has_image = False
    if isinstance(staged_image_input, str):
        has_image = staged_image_input != ""
    elif isinstance(staged_image_input, np.ndarray):
        has_image = staged_image_input.size > 0
    else:
        has_image = staged_image_input is not None

    if not has_text and not has_image:
        return user_message, chat_history

    if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] and "thinking" in chat_history[-1]['content'].lower():
        return user_message, chat_history

    user_message_to_add = "Analyzing Staged Media." if (not has_text and has_image) else user_message.strip()
    chat_history.append({"role": "user", "content": moderate_sanitize_for_ui(user_message_to_add)})
    return "", chat_history


def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
    if file_path:
        return file_path, f"πŸ“Ž File staged: {os.path.basename(file_path)}. Click send (✈️).", gr.update(value="", interactive=True), gr.update(interactive=False)
    return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)


def clear_staged_media() -> gr.update:
    return gr.update(value=None)


def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
    if not history or not history[-1]['content']:
        return history, "Error: No final response to check.", gr.update(visible=False)
    last_user_prompt = ""
    for item in reversed(history):
        if item['role'] == 'user' and item['content']:
            last_user_prompt = item['content'].split("**User Query:**")[-1].strip().replace("[IMAGE RECEIVED]", "").strip()
            break
    if not last_user_prompt:
        return history, "Error: Could not find query.", gr.update(visible=False)
    web_results = web_search_tool(last_user_prompt)
    new_history = list(history)
    new_history[-1]['content'] += "\n\n" + moderate_sanitize_for_ui(web_results)
    return new_history, "βœ… Double-checked with web facts.", gr.update(visible=False)


def auto_capture_camera(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]], Any, gr.update, gr.update, gr.update, gr.update, gr.update]:
    _, chat_history = user_turn(user_message, chat_history, staged_image_input)
    if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
        chat_history[-1]['content'] = "πŸ“Έ Preparing camera capture..."
    return "", chat_history, staged_image_input, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value="πŸ“Έ Capturing in 3 seconds...", interactive=False), gr.update(value="βž•")

# --- GRADIO UI ---
with gr.Blocks(theme=gr.themes.Soft(), title="Prototype") as demo:
    stop_signal = gr.State(value=False)
    is_voice_chat = gr.State(value=False)
    staged_image = gr.State(value=None)
    menu_visible_state = gr.State(value=False)

    gr.HTML("<h1 style='text-align: center; color: #4B0082;'>πŸŒ™ Prototype</h1>")

    hint_box = gr.Textbox(value="Ask anything", lines=1, show_label=False, interactive=False, placeholder="Luna's Action...", visible=True)
    file_download_output = gr.File(label="Generated File", visible=False)

    with gr.Row(visible=False) as fact_check_btn_row:
        gr.Column(min_width=1); btn_fact_check = gr.Button("Fact Check πŸ”Ž"); gr.Column(min_width=1)

    chatbot = gr.Chatbot(label="Luna", height=500, type='messages')

    with gr.Row(visible=False) as webcam_capture_row:
        webcam_capture_component = gr.Image(sources=["webcam"], type="numpy", show_label=False)
        close_webcam_btn = gr.Button("βœ… Use this image")

    with gr.Row(visible=False) as audio_record_row:
        audio_input = gr.Audio(sources=["microphone"], type="filepath", show_label=False)

    with gr.Column(visible=False, elem_id="menu_options_row") as menu_options_row:
        file_input = gr.File(type="filepath", label="File Uploader", interactive=False)
        btn_take_photo = gr.Button("πŸ“Έ Google Lens (Take Photo)")
        btn_add_files = gr.Button("πŸ“Ž Upload File")

    with gr.Row(variant="panel") as input_row:
        btn_menu = gr.Button("βž•", interactive=True, size="sm")
        txt = gr.Textbox(placeholder="Ask anything", show_label=False, lines=1, autofocus=True)
        mic_btn = gr.Button("πŸŽ™οΈ", interactive=True, size="sm")
        combined_btn = gr.Button("✈️", variant="primary", size="sm")

    audio_output = gr.Audio(visible=False)

    output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]

    # wiring
    btn_menu.click(fn=toggle_menu, inputs=[menu_visible_state], outputs=[menu_visible_state, menu_options_row, fact_check_btn_row, btn_menu], queue=False)

    def prepare_file_upload(): return gr.update(visible=False), gr.update(value="βž•"), gr.update(visible=False), gr.update(interactive=True), gr.update(value="")
    btn_add_files.click(fn=prepare_file_upload, inputs=[], outputs=[menu_options_row, btn_menu, fact_check_btn_row, file_input, txt], queue=False)

    file_input.change(fn=stage_file_upload, inputs=[file_input], outputs=[staged_image, hint_box, txt, file_input], queue=False)

    btn_take_photo.click(
        fn=lambda: (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), "πŸ“Έ Camera Active. Capture an image.", gr.update(value="βž•")),
        inputs=[], outputs=[menu_options_row, webcam_capture_row, input_row, hint_box, btn_menu], queue=False
    )

    close_webcam_btn.click(
        fn=lambda img: (gr.update(visible=True), gr.update(visible=False), img, f"πŸ“Έ Photo staged: Click send (✈️).", gr.update(value="")),
        inputs=[webcam_capture_component], outputs=[input_row, webcam_capture_row, staged_image, hint_box, txt], queue=False
    )

    mic_btn.click(
        fn=lambda: (gr.update(visible=False), gr.update(visible=True), "πŸŽ™οΈ Recording..."),
        inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
    ).then(
        fn=simulate_recording_delay, inputs=[], outputs=[], queue=False
    ).then(
        fn=lambda: (gr.update(visible=True), gr.update(visible=False), "πŸŽ™οΈ Processing recording..."),
        inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
    ).then(
        fn=transcribe_audio, inputs=audio_input, outputs=[txt, hint_box, txt, combined_btn, is_voice_chat, fact_check_btn_row], queue=False
    ).then(
        fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
    ).then(
        fn=chat_generator, inputs=[txt, staged_image, chatbot, stop_signal, is_voice_chat], outputs=output_components, queue=True
    ).then(
        fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
    )

    generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]

    txt.submit(fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False).then(
        fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
    ).then(fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False)

    combined_btn.click(fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False).then(
        fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
    ).then(fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False)

    btn_fact_check.click(fn=manual_fact_check, inputs=[chatbot], outputs=[chatbot, hint_box, fact_check_btn_row], queue=True)

demo.queue(max_size=20).launch(server_name="0.0.0.0")