Spaces:
Running
Running
File size: 35,383 Bytes
8d1858d 4f7f656 8d1858d 4f7f656 bb016b3 8d1858d a7a6d88 127e5e0 8d1858d 6ac02a9 8d1858d 127e5e0 8d1858d 6ac02a9 127e5e0 6ac02a9 127e5e0 6ac02a9 a7a6d88 bb016b3 127e5e0 be95ded c2a3849 be95ded a7a6d88 be95ded a7a6d88 8d1858d 6ac02a9 8d1858d 3540807 8d1858d 127e5e0 8d1858d 127e5e0 8d1858d 6ac02a9 127e5e0 8d1858d 127e5e0 8d1858d be95ded 8d1858d 6ac02a9 8d1858d 127e5e0 be95ded bb016b3 127e5e0 bb016b3 be95ded 127e5e0 be95ded 127e5e0 bb016b3 be95ded 127e5e0 be95ded 127e5e0 be95ded 127e5e0 be95ded 127e5e0 be95ded 127e5e0 8d1858d be95ded 8d1858d bb016b3 8d1858d bb016b3 8d1858d 9348229 127e5e0 be95ded 127e5e0 be95ded c2a3849 be95ded 127e5e0 c2a3849 127e5e0 be95ded 127e5e0 be95ded 8d1858d be95ded 8d1858d be95ded c2a3849 127e5e0 8d1858d be95ded 6ac02a9 127e5e0 be95ded 6ac02a9 8d1858d 4f7f656 f6b95b3 127e5e0 f6b95b3 6ac02a9 f6b95b3 bb016b3 127e5e0 bb016b3 be95ded bb016b3 be95ded bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 bb016b3 127e5e0 4f7f656 127e5e0 be95ded bb016b3 127e5e0 bb016b3 be95ded bb016b3 6ac02a9 f6b95b3 127e5e0 be95ded 127e5e0 6ac02a9 8d1858d 127e5e0 8d1858d 6ac02a9 8d1858d be95ded 8d1858d 6ac02a9 a7a6d88 8d1858d 6ac02a9 8d1858d be95ded 8d1858d be95ded 4f7f656 127e5e0 be95ded bb016b3 be95ded 4f7f656 3540807 bb016b3 be95ded 8d1858d 127e5e0 be95ded 3540807 8d1858d bb016b3 6ac02a9 bb016b3 6ac02a9 3540807 6ac02a9 3540807 4f7f656 3540807 6ac02a9 3540807 6ac02a9 3540807 8d1858d 4f7f656 3540807 4f7f656 3540807 8d1858d 95abdee be95ded 4f7f656 6ac02a9 be95ded 6ac02a9 8d1858d 6ac02a9 bb016b3 8d1858d be95ded 9348229 6ac02a9 127e5e0 6ac02a9 4f7f656 6ac02a9 8d1858d 4f7f656 be95ded 4f7f656 8d1858d 127e5e0 8d1858d bb016b3 8d1858d bb016b3 6ac02a9 a7a6d88 8d1858d be95ded 6ac02a9 127e5e0 8d1858d 6ac02a9 bb016b3 6ac02a9 8d1858d 6ac02a9 3540807 4f7f656 8d1858d 127e5e0 be95ded 127e5e0 8d1858d be95ded 8d1858d bb016b3 127e5e0 bb016b3 8d1858d bb016b3 8d1858d bb016b3 127e5e0 bb016b3 127e5e0 be95ded 127e5e0 bb016b3 4f7f656 bb016b3 8d1858d 127e5e0 be95ded 127e5e0 bb016b3 8d1858d 127e5e0 8d1858d a7a6d88 be95ded 4f7f656 8d1858d bb016b3 127e5e0 6ac02a9 bb016b3 8d1858d bb016b3 6ac02a9 bb016b3 8d1858d bb016b3 127e5e0 6ac02a9 bb016b3 8d1858d be95ded bb016b3 8d1858d 127e5e0 be95ded bb016b3 6ac02a9 4f7f656 a7a6d88 4f7f656 6ac02a9 127e5e0 6ac02a9 4f7f656 127e5e0 8d1858d 6ac02a9 8d1858d be95ded 4f7f656 6ac02a9 9348229 4f7f656 9348229 4f7f656 9348229 a7a6d88 9348229 6ac02a9 8d1858d bb016b3 be95ded 4f7f656 8d1858d be95ded f6b95b3 8d1858d 4f7f656 8d1858d be95ded 8d1858d be95ded 8d1858d f6b95b3 8d1858d 6ac02a9 8d1858d be95ded 8d1858d be95ded 4f7f656 a7a6d88 f6b95b3 8d1858d 4f7f656 8d1858d 127e5e0 be95ded 8d1858d 6ac02a9 8d1858d 6ac02a9 be95ded a7a6d88 6ac02a9 8d1858d 4f7f656 8d1858d 6ac02a9 8d1858d f6b95b3 8d1858d 6ac02a9 8d1858d 6ac02a9 8d1858d 6ac02a9 8d1858d 6ac02a9 8d1858d 127e5e0 6ac02a9 4f7f656 8d1858d 6ac02a9 127e5e0 8d1858d a7a6d88 6ac02a9 8d1858d 4f7f656 a7a6d88 8d1858d 6ac02a9 a7a6d88 4f7f656 a7a6d88 8d1858d 6ac02a9 127e5e0 a7a6d88 127e5e0 6ac02a9 127e5e0 a7a6d88 127e5e0 6ac02a9 127e5e0 8d1858d c2a3849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
import gradio as gr
import os
import time
import re
import random
import torch
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from typing import List, Dict, Any, Tuple
from PIL import Image
from transformers import pipeline
from gtts import gTTS
from diffusers import StableDiffusionPipeline
from docx import Document
from pptx import Presentation
from io import BytesIO
import numpy as np
# --- CONFIGURATION & INITIALIZATION ---
# Use string 'cpu' or GPU index string/int like '0'
USER_DEVICE = "cpu" # keep as "cpu" on CPU-only hosts; change to "0" for GPU 0
PIPELINE_DEVICE = -1 if str(USER_DEVICE).lower() == "cpu" else int(USER_DEVICE)
TORCH_DEVICE = torch.device("cuda") if torch.cuda.is_available() and PIPELINE_DEVICE != -1 else torch.device("cpu")
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
AUDIO_DIR = "audio_outputs"
DOC_DIR = "doc_outputs"
if not os.path.exists(AUDIO_DIR):
os.makedirs(AUDIO_DIR)
if not os.path.exists(DOC_DIR):
os.makedirs(DOC_DIR)
REPO_ID = "cosmosai471/Luna-v3"
MODEL_FILE = "luna.gguf"
LOCAL_MODEL_PATH = MODEL_FILE
SYSTEM_PROMPT = (
"You are Luna, a helpful and friendly AI assistant. For internal tracing you may place Intent/Confidence tags, "
"but DO NOT expose these tags in the user-facing response. Any Intent/Confidence/Action metadata must be kept internal."
)
# --- TUNABLES / GUARDS ---
CONFIDENCE_THRESHOLD = 30 # trigger web-search fallback only under this confidence
STREAM_CHAR_LIMIT = 35000 # cap streaming characters
STREAM_ITER_LIMIT = 20000 # cap streaming iterations
MIN_MEANINGFUL_LENGTH = 20 # min length for file-generation prompts
IMAGE_MAX_SIDE = 1024 # resize images to this max side before sending to image pipeline
# safe destructor for Llama objects
def safe_del(self):
try:
if hasattr(self, "close") and callable(self.close):
self.close()
except Exception:
pass
Llama.__del__ = safe_del
# --- MODEL LOADING ---
llm = None
try:
print(f"Downloading {MODEL_FILE} from {REPO_ID}...")
hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE, local_dir=".")
if not os.path.exists(LOCAL_MODEL_PATH):
raise FileNotFoundError(f"Download failed for {MODEL_FILE}")
print("Initializing Llama...")
llm = Llama(
model_path=LOCAL_MODEL_PATH,
n_ctx=8192,
n_threads=4,
n_batch=256,
n_gpu_layers=0,
verbose=False
)
print("β
Luna Model loaded successfully!")
except Exception as e:
print(f"β Error loading Luna model: {e}")
class DummyLLM:
def create_completion(self, *args, **kwargs):
yield {'choices': [{'text': '[Intent: qa_general][Confidence: 0] ERROR: Luna model failed to load. Check logs and resources.'}]}
llm = DummyLLM()
# transformer's pipeline expects device int: -1 for CPU
stt_pipe = None
try:
stt_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=PIPELINE_DEVICE)
print(f"β
Loaded Whisper-base on device: {USER_DEVICE}")
except Exception as e:
print(f"β οΈ Could not load Whisper. Voice chat disabled. Error: {e}")
image_pipe = None
try:
VLM_MODEL_ID = "llava-hf/llava-1.5-7b-hf"
image_pipe = pipeline("image-to-text", model=VLM_MODEL_ID, device=PIPELINE_DEVICE)
print(f"β
Loaded {VLM_MODEL_ID} for image processing (device={USER_DEVICE}).")
except Exception as e:
print(f"β οΈ Could not load VLM ({VLM_MODEL_ID}). Image chat disabled. Error: {e}")
img_gen_pipe = None
try:
img_gen_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32)
img_gen_pipe.to(TORCH_DEVICE)
print(f"β
Loaded Stable Diffusion and moved to {TORCH_DEVICE}.")
except Exception as e:
print(f"β οΈ Could not load Image Generation pipeline. Image generation disabled. Error: {e}")
# --- SANITIZERS & UTILITIES ---
def simulate_recording_delay():
time.sleep(3)
return None
def remove_bracketed_tags(text: str) -> str:
"""Remove bracketed tags like [Intent: ...] [Confidence: ...] exactly (safe)."""
if not text:
return ""
text = re.sub(r'\[Intent:\s*[\w\-\_]+\]', '', text, flags=re.IGNORECASE)
text = re.sub(r'\[Confidence:\s*\d{1,3}\]', '', text, flags=re.IGNORECASE)
text = re.sub(r'\[Action:\s*[^\]]+\]', '', text, flags=re.IGNORECASE)
return text
def remove_plain_tag_lines(text: str) -> str:
"""Remove whole lines that are just 'Intent: ...' or 'Confidence: ...' preserving inline content."""
if not text:
return ""
text = re.sub(r'(?im)^\s*Intent\s*[:\-]\s*.*$', '', text)
text = re.sub(r'(?im)^\s*Confidence\s*[:\-]\s*.*$', '', text)
text = re.sub(r'(?im)^\s*Action\s*[:\-]\s*.*$', '', text)
return text
def remove_word_number_dumps(text: str) -> str:
"""Remove big classifier dumps like 'greeting 99 2. goodbye 99' but try to preserve normal text.
This removes sequences where a word token is followed immediately by 1-3 numbers and repeats (likely classifier logs).
Only removes when they appear as standalone clusters (surrounded by line breaks or punctuation)."""
if not text:
return ""
# find clusters between line boundaries or punctuation
cluster_pattern = re.compile(r'(?:\n|^|[\(\[\{\.;:,\-\|>])\s*([a-zA-Z_\-]{2,40}(?:\s+\d{1,3}){1,4}(?:\s+[a-zA-Z_\-]{2,40}(?:\s+\d{1,3}){1,4})*)\s*(?:\n|$|[\)\]\}\.;:,\-\|<])', flags=re.IGNORECASE)
def _strip_cluster(m):
return '\n' # replace cluster with a newline to preserve sentence boundaries
text = cluster_pattern.sub(_strip_cluster, text)
# remove leftover isolated numeric sequences (only small groups)
text = re.sub(r'\b\d{2,3}(?:\s+\d{1,3})*\b', '', text)
return text
def collapse_whitespace(text: str) -> str:
if not text:
return ""
text = re.sub(r'\n\s*\n+', '\n\n', text)
text = re.sub(r'[ \t]{2,}', ' ', text)
return text.strip()
def moderate_sanitize_for_ui(raw: str) -> str:
"""
Moderate sanitizer: removes bracketed tags, whole tag-lines, and classifier dumps (carefully),
but otherwise preserves natural language content.
"""
if not raw:
return ""
s = raw
s = remove_bracketed_tags(s)
s = remove_plain_tag_lines(s)
s = remove_word_number_dumps(s)
s = collapse_whitespace(s)
# final quick guard to remove exact words 'Intent' or 'Confidence' if accidentally left alone
s = re.sub(r'(?i)\bIntent\b', '', s)
s = re.sub(r'(?i)\bConfidence\b', '', s)
s = re.sub(r'(?i)\bAction\b', '', s)
s = collapse_whitespace(s)
return s.strip()
# web-search stub
def web_search_tool(query: str) -> str:
time.sleep(1.2)
print(f"Simulating Google Search fallback for: {query}")
return f"\n\nπ **Web Search Results for '{query}':** I found supplemental info to help answer this."
def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
"""
Internal: parse confidence if present (for logic only), but never display it. If fallback triggered,
append web results to sanitized response. Uses moderate sanitizer to avoid eating valid content.
"""
cleaned_for_logic = remove_bracketed_tags(raw_response_with_tags)
confidence_match = re.search(r'\[Confidence:\s*([0-9]{1,3})\]', raw_response_with_tags, flags=re.IGNORECASE)
if confidence_match:
try:
confidence_score = int(confidence_match.group(1))
confidence_score = max(0, min(confidence_score, 100))
except Exception:
confidence_score = 0
else:
cleaned_no_tags = moderate_sanitize_for_ui(cleaned_for_logic)
confidence_score = 10 if not cleaned_no_tags or len(cleaned_no_tags) < 30 else 85
if confidence_score < CONFIDENCE_THRESHOLD:
print(f"[internal] Low confidence ({confidence_score}%) detected -> using web fallback")
supplement = web_search_tool(prompt)
out = moderate_sanitize_for_ui(cleaned_for_logic)
if not out:
out = "I couldn't generate a reliable answer. " + moderate_sanitize_for_ui(supplement)
else:
out = out + "\n\n" + moderate_sanitize_for_ui(supplement)
else:
out = moderate_sanitize_for_ui(cleaned_for_logic)
out = out or "Sorry β I couldn't produce a good answer. Could you rephrase or give more details?"
return out
# --- IMAGE / VQA PROCESSING (robust + resize) ---
def _resize_image_keep_aspect(img: Image.Image, max_side: int) -> Image.Image:
w, h = img.size
if max(w, h) <= max_side:
return img
scale = max_side / float(max(w, h))
new_w = int(w * scale)
new_h = int(h * scale)
return img.resize((new_w, new_h), Image.LANCZOS)
def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
"""
Uses image_pipe to produce VQA text. Resizes image to avoid token/feature mismatch issues.
Returns prompt-injection (safe) + success flag.
"""
global image_pipe
success = False
if image_pipe is None:
return f"[Image Processing Error: VLM model not loaded.] **User Query:** {message}", False
image = None
try:
if isinstance(image_data_or_path, str):
image = Image.open(image_data_or_path).convert("RGB")
elif isinstance(image_data_or_path, np.ndarray):
image = Image.fromarray(image_data_or_path).convert("RGB")
else:
try:
image = Image.open(BytesIO(image_data_or_path)).convert("RGB")
except Exception:
image = None
if image is None:
return f"[Image Processing Error: Could not open image.] **User Query:** {message}", False
# Resize defensively before passing to VLM pipeline (fixes token/features mismatch errors)
image = _resize_image_keep_aspect(image, IMAGE_MAX_SIDE)
vqa_prompt = f"USER: <image>\n{message}\nASSISTANT:"
results = None
try:
# preferred signature
results = image_pipe(image, prompt=vqa_prompt)
except TypeError:
try:
results = image_pipe(image)
except Exception as e:
print(f"Image pipeline call failed: {e}")
results = None
except Exception as e:
print(f"Image pipeline call error: {e}")
results = None
raw_text = ""
if results is None:
raw_text = ""
elif isinstance(results, dict):
raw_text = results.get("generated_text") or results.get("text") or ""
elif isinstance(results, list):
first = results[0]
if isinstance(first, dict):
raw_text = first.get("generated_text") or first.get("text") or ""
elif isinstance(first, str):
raw_text = first
elif isinstance(results, str):
raw_text = results
else:
try:
raw_text = str(results)
except Exception:
raw_text = ""
vqa_response = raw_text.split("ASSISTANT:")[-1].strip() if raw_text else ""
vqa_response = moderate_sanitize_for_ui(vqa_response)
if not vqa_response or len(vqa_response) < 10:
vqa_response = (
"VQA analysis didn't return a clear answer. The image might be unclear or the question ambiguous. "
"Please re-upload a clearer image, crop to the subject, or give a short instruction about what you'd like answered."
)
success = False
else:
success = True
prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {moderate_sanitize_for_ui(message)}"
return prompt_injection, success
except Exception as e:
print(f"Image processing exception: {e}")
return f"[Image Processing Error: {e}] **User Query:** {moderate_sanitize_for_ui(message)}", False
# --- AUDIO / TTS ---
def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
if stt_pipe is None or not audio_file_path:
error_msg = "Error: Whisper model failed to load or no audio recorded."
return "", error_msg, gr.update(interactive=True), gr.update(value="β", interactive=True, elem_classes=["circle-btn", "send-mode"]), False, gr.update(visible=False)
try:
transcribed_text = stt_pipe(audio_file_path)["text"]
new_button_update = gr.update(value="β", interactive=True, elem_classes=["circle-btn", "send-mode"])
return (
transcribed_text.strip(),
f"ποΈ Transcribed: '{transcribed_text.strip()}'",
gr.update(interactive=True),
new_button_update,
True,
gr.update(visible=False)
)
except Exception as e:
error_msg = f"Transcription Error: {e}"
return "", error_msg, gr.update(interactive=True), gr.update(value="β", interactive=True, elem_classes=["circle-btn", "send-mode"]), False, gr.update(visible=False)
def text_to_audio(text: str, is_voice_chat: bool) -> str or None:
if not is_voice_chat:
return None
clean_text = re.sub(r'```.*?```|\[Image Processing Error:.*?\]|\*\*Web Search Results:.*?$|\(file=.*?\)', '', text, flags=re.DOTALL | re.MULTILINE)
if len(clean_text.strip()) > 5:
try:
audio_output_path = os.path.join(AUDIO_DIR, f"luna_response_{random.randint(1000, 9999)}.mp3")
tts = gTTS(text=clean_text.strip(), lang='en')
tts.save(audio_output_path)
return audio_output_path
except Exception as e:
print(f"gTTS Error: {e}")
return None
return None
# --- INTENT MAP & PARSING ---
INTENT_STATUS_MAP = {
"code_generate": "Analyzing requirements and drafting code π»...",
"code_explain": "Reviewing code logic and writing explanation π‘...",
"qa_general": "Drafting comprehensive general answer βοΈ...",
"greeting": "Replying to greeting π...",
"vqa": "Analyzing VQA results and forming a final response π§ ...",
"image_generate": "Generating image using Stable Diffusion (This may be slow on CPU) πΌοΈ...",
"doc_generate": "Generating content and formatting DOCX file π...",
"ppt_generate": "Generating content and formatting PPTX file π...",
"open_camera": "Activating camera for image capture πΈ...",
"open_google": "Simulating external search link generation π...",
"default": "Luna is thinking...",
}
# Additional keyword-based intent inference (helps when model doesn't include tags)
INTENT_KEYWORD_MAP = [
(re.compile(r"\b(create|generate|make)\b.*\b(image|picture|photo|art)\b", flags=re.IGNORECASE), "image_generate"),
(re.compile(r"\b(create|generate|make)\b.*\b(document|doc|report|letter|resume)\b", flags=re.IGNORECASE), "doc_generate"),
(re.compile(r"\b(create|generate|make)\b.*\b(presentation|ppt|slides)\b", flags=re.IGNORECASE), "ppt_generate"),
]
def infer_intent_from_content(text: str) -> str:
if not text:
return "default"
for patt, intent in INTENT_KEYWORD_MAP:
if patt.search(text):
return intent
return "default"
def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
"""
Internal parsing: returns (intent, status, cleaned_display_text).
cleaned_display_text preserves content but strips tags/garbage moderately.
If no explicit [Intent:] tag is found, infer intent from content_for_tool keywords.
"""
intent_match = re.search(r'\[Intent:\s*([\w\-\_]+)\]', raw_response, re.IGNORECASE)
intent = intent_match.group(1).lower() if intent_match else None
if is_vqa_flow:
intent = "vqa"
cleaned_text = moderate_sanitize_for_ui(raw_response)
# If no explicit intent from tags, try to infer from cleaned_text
if not intent or intent == "default":
inferred = infer_intent_from_content(cleaned_text)
if inferred != "default":
intent = inferred
intent = intent or "default"
status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
return intent, status, cleaned_text
# --- FILE / IMAGE GENERATION ---
def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
file_path = None
try:
if not content or len(content.strip()) < MIN_MEANINGFUL_LENGTH:
history[-1]['content'] = (
f"β οΈ I was asked to create a {file_type}, but I don't have enough details. "
"Please provide a 1β2 sentence description of what the file should contain."
)
return history, None
if file_type == "image":
if img_gen_pipe is None:
raise RuntimeError("Image generation model not loaded.")
image = img_gen_pipe(content).images[0]
file_filename = f"generated_img_{random.randint(1000, 9999)}.png"
file_path = os.path.join(DOC_DIR, file_filename)
image.save(file_path)
display_content = f"πΌοΈ **Image Generated!**\n\n[Download {file_filename}](file={file_path})"
elif file_type == "doc":
doc = Document()
doc.add_heading('Luna Generated Document', 0)
doc.add_paragraph(content)
file_filename = f"generated_doc_{random.randint(1000, 9999)}.docx"
file_path = os.path.join(DOC_DIR, file_filename)
doc.save(file_path)
display_content = f"π **Document Generated!** Summary:\n\n{content[:200]}...\n\n[Download {file_filename}](file={file_path})"
elif file_type == "ppt":
prs = Presentation()
slide = prs.slides.add_slide(prs.slide_layouts[0])
slide.shapes.title.text = "Luna Generated Presentation"
try:
slide.placeholders[1].text = content[:200] + "..."
except Exception:
pass
file_filename = f"generated_ppt_{random.randint(1000, 9999)}.pptx"
file_path = os.path.join(DOC_DIR, file_filename)
prs.save(file_path)
display_content = f"π **Presentation Generated!** Summary:\n\n{content[:200]}...\n\n[Download {file_filename}](file={file_path})"
else:
raise ValueError(f"Unknown file type: {file_type}")
history[-1]['content'] = display_content
except Exception as e:
error_msg = f"β **Error generating {file_type.upper()}:** {e}. Check logs/libs."
history[-1]['content'] = error_msg
file_path = None
return history, file_path
# --- CORE GENERATOR FUNCTION ---
def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
"""
- assistant entry appended only when generation actually starts (no empty box).
- streaming sanitized moderately to keep meaning while removing metadata.
- when image is attached, VQA flow is strictly used (image model output injected to LLM).
"""
if not history or history[-1]['role'] != 'user':
yield history, False, "Error: Generator called in unexpected state (no user message found).", gr.update(interactive=True), gr.update(value="β", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
return
last_user_index = len(history) - 1
original_message = history[last_user_index]['content'] or ""
# detect VQA flow: if image attached, force image flow
is_vqa_flow = False
if isinstance(image_input_data, str):
is_vqa_flow = bool(image_input_data)
elif isinstance(image_input_data, np.ndarray):
is_vqa_flow = image_input_data.size > 0
else:
is_vqa_flow = image_input_data is not None
vqa_success = False
llm_input_message = original_message
if is_vqa_flow:
processed_message, vqa_success = process_image(image_input_data, original_message)
history[last_user_index]['content'] = f"[IMAGE RECEIVED] {moderate_sanitize_for_ui(original_message)}"
# ensure that LLM prompt includes VQA analysis and the user message
llm_input_message = processed_message
# build prompt
prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
for item in history[:-1]:
role = item['role'].upper()
content = item['content'] or ""
if role == "ASSISTANT":
prompt += f"LUNA: {content}\n"
elif role == "USER":
prompt += f"USER: {content}\n"
prompt += f"USER: {llm_input_message}\nLUNA: "
# append assistant entry now
assistant_initial_text = "β¨ Luna is starting to think..."
history.append({"role": "assistant", "content": assistant_initial_text})
yield history, stop_signal, assistant_initial_text, gr.update(value="", interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
time.sleep(0.12)
full_response = ""
current_intent = "default"
iter_count = 0
try:
stream = llm.create_completion(
prompt=prompt, max_tokens=8192,
stop=["USER:", "SYSTEM:", "</s>"],
echo=False, stream=True, temperature=0.7
)
except Exception as e:
err = f"β Error generating response: {e}"
history[-1]['content'] = moderate_sanitize_for_ui(err)
yield history, False, err, gr.update(interactive=True), gr.update(value="β", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
return
# stream tokens; moderately sanitize and cap
try:
for output in stream:
iter_count += 1
if iter_count > STREAM_ITER_LIMIT:
full_response += "\n\n[Stream aborted: iteration limit reached]"
print("Stream aborted by iter limit.")
break
token = output["choices"][0].get("text", "")
if not isinstance(token, str):
token = str(token)
full_response += token
if len(full_response) > STREAM_CHAR_LIMIT:
full_response = full_response[:STREAM_CHAR_LIMIT] + "\n\n[Truncated: length limit reached]"
print("Stream truncated by char limit.")
break
current_intent, current_hint, interim = get_intent_status(full_response, is_vqa_flow and vqa_success)
interim_ui = moderate_sanitize_for_ui(interim)
if not interim_ui:
interim_ui = "β¨ Luna is forming a reply..."
history[-1]['content'] = interim_ui
yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
except Exception as e:
_, _, salvage = get_intent_status(full_response, is_vqa_flow and vqa_success)
salvage_ui = moderate_sanitize_for_ui(salvage) or f"β οΈ Streaming interrupted: {e}"
history[-1]['content'] = salvage_ui
yield history, False, f"β οΈ Streaming interrupted: {e}", gr.update(interactive=True), gr.update(value="β", interactive=True), None, False, gr.update(visible=True), image_input_data, gr.update(), gr.update()
return
# post-process
file_download_path = None
_, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
content_for_tool = moderate_sanitize_for_ui(content_for_tool)
if current_intent == "image_generate":
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
history[-1]['content'] = "I detected an image generation request but didn't get enough details. Please give a short description (e.g. 'red bicycle at sunrise, vivid colors')."
else:
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
history, file_download_path = generate_file_content(content_for_tool, history, "image")
elif current_intent == "doc_generate":
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
history[-1]['content'] = "I can create a document, but I need a 1β2 sentence description of what to include."
else:
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
history, file_download_path = generate_file_content(content_for_tool, history, "doc")
elif current_intent == "ppt_generate":
if not content_for_tool or len(content_for_tool.strip()) < MIN_MEANINGFUL_LENGTH:
history[-1]['content'] = "I can make a short presentation β please give a title and 3β5 bullet points."
else:
history[-1]['content'] = INTENT_STATUS_MAP[current_intent]
yield history, stop_signal, history[-1]['content'], gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
history, file_download_path = generate_file_content(content_for_tool, history, "ppt")
elif current_intent == "open_google":
final_text = (content_for_tool or "").strip() + "\n\nπ **Action:** [Search Google](https://www.google.com/search?q=" + re.sub(r'\s+', '+', moderate_sanitize_for_ui(original_message)) + ")"
history[-1]['content'] = moderate_sanitize_for_ui(final_text)
elif current_intent == "open_camera":
final_text = (content_for_tool or "").strip() + "\n\nπΈ **Action:** Use the 'Google Lens' button to capture an image."
history[-1]['content'] = moderate_sanitize_for_ui(final_text)
else:
final_response_content = check_confidence_and_augment(full_response, original_message)
history[-1]['content'] = final_response_content
if not history[-1]['content'] or not str(history[-1]['content']).strip():
history[-1]['content'] = "Sorry β I couldn't produce a useful response. Could you rephrase or add details?"
audio_file_path = text_to_audio(history[-1]['content'], is_voice_chat)
hint = "β
Response generated."
yield history, False, hint, gr.update(interactive=True), gr.update(value="β", interactive=True), audio_file_path, False, gr.update(visible=True), gr.update(value=None), gr.update(), file_download_path
# --- GRADIO WRAPPERS ---
def toggle_menu(current_visibility: bool) -> Tuple[bool, gr.update, gr.update, gr.update]:
new_visibility = not current_visibility
return new_visibility, gr.update(visible=new_visibility), gr.update(visible=False), gr.update(value="β¬οΈ" if new_visibility else "β")
def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
has_text = bool(user_message and user_message.strip())
has_image = False
if isinstance(staged_image_input, str):
has_image = staged_image_input != ""
elif isinstance(staged_image_input, np.ndarray):
has_image = staged_image_input.size > 0
else:
has_image = staged_image_input is not None
if not has_text and not has_image:
return user_message, chat_history
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] and "thinking" in chat_history[-1]['content'].lower():
return user_message, chat_history
user_message_to_add = "Analyzing Staged Media." if (not has_text and has_image) else user_message.strip()
chat_history.append({"role": "user", "content": moderate_sanitize_for_ui(user_message_to_add)})
return "", chat_history
def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
if file_path:
return file_path, f"π File staged: {os.path.basename(file_path)}. Click send (βοΈ).", gr.update(value="", interactive=True), gr.update(interactive=False)
return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)
def clear_staged_media() -> gr.update:
return gr.update(value=None)
def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
if not history or not history[-1]['content']:
return history, "Error: No final response to check.", gr.update(visible=False)
last_user_prompt = ""
for item in reversed(history):
if item['role'] == 'user' and item['content']:
last_user_prompt = item['content'].split("**User Query:**")[-1].strip().replace("[IMAGE RECEIVED]", "").strip()
break
if not last_user_prompt:
return history, "Error: Could not find query.", gr.update(visible=False)
web_results = web_search_tool(last_user_prompt)
new_history = list(history)
new_history[-1]['content'] += "\n\n" + moderate_sanitize_for_ui(web_results)
return new_history, "β
Double-checked with web facts.", gr.update(visible=False)
def auto_capture_camera(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]], Any, gr.update, gr.update, gr.update, gr.update, gr.update]:
_, chat_history = user_turn(user_message, chat_history, staged_image_input)
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
chat_history[-1]['content'] = "πΈ Preparing camera capture..."
return "", chat_history, staged_image_input, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value="πΈ Capturing in 3 seconds...", interactive=False), gr.update(value="β")
# --- GRADIO UI ---
with gr.Blocks(theme=gr.themes.Soft(), title="Prototype") as demo:
stop_signal = gr.State(value=False)
is_voice_chat = gr.State(value=False)
staged_image = gr.State(value=None)
menu_visible_state = gr.State(value=False)
gr.HTML("<h1 style='text-align: center; color: #4B0082;'>π Prototype</h1>")
hint_box = gr.Textbox(value="Ask anything", lines=1, show_label=False, interactive=False, placeholder="Luna's Action...", visible=True)
file_download_output = gr.File(label="Generated File", visible=False)
with gr.Row(visible=False) as fact_check_btn_row:
gr.Column(min_width=1); btn_fact_check = gr.Button("Fact Check π"); gr.Column(min_width=1)
chatbot = gr.Chatbot(label="Luna", height=500, type='messages')
with gr.Row(visible=False) as webcam_capture_row:
webcam_capture_component = gr.Image(sources=["webcam"], type="numpy", show_label=False)
close_webcam_btn = gr.Button("β
Use this image")
with gr.Row(visible=False) as audio_record_row:
audio_input = gr.Audio(sources=["microphone"], type="filepath", show_label=False)
with gr.Column(visible=False, elem_id="menu_options_row") as menu_options_row:
file_input = gr.File(type="filepath", label="File Uploader", interactive=False)
btn_take_photo = gr.Button("πΈ Google Lens (Take Photo)")
btn_add_files = gr.Button("π Upload File")
with gr.Row(variant="panel") as input_row:
btn_menu = gr.Button("β", interactive=True, size="sm")
txt = gr.Textbox(placeholder="Ask anything", show_label=False, lines=1, autofocus=True)
mic_btn = gr.Button("ποΈ", interactive=True, size="sm")
combined_btn = gr.Button("βοΈ", variant="primary", size="sm")
audio_output = gr.Audio(visible=False)
output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]
# wiring
btn_menu.click(fn=toggle_menu, inputs=[menu_visible_state], outputs=[menu_visible_state, menu_options_row, fact_check_btn_row, btn_menu], queue=False)
def prepare_file_upload(): return gr.update(visible=False), gr.update(value="β"), gr.update(visible=False), gr.update(interactive=True), gr.update(value="")
btn_add_files.click(fn=prepare_file_upload, inputs=[], outputs=[menu_options_row, btn_menu, fact_check_btn_row, file_input, txt], queue=False)
file_input.change(fn=stage_file_upload, inputs=[file_input], outputs=[staged_image, hint_box, txt, file_input], queue=False)
btn_take_photo.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), "πΈ Camera Active. Capture an image.", gr.update(value="β")),
inputs=[], outputs=[menu_options_row, webcam_capture_row, input_row, hint_box, btn_menu], queue=False
)
close_webcam_btn.click(
fn=lambda img: (gr.update(visible=True), gr.update(visible=False), img, f"πΈ Photo staged: Click send (βοΈ).", gr.update(value="")),
inputs=[webcam_capture_component], outputs=[input_row, webcam_capture_row, staged_image, hint_box, txt], queue=False
)
mic_btn.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True), "ποΈ Recording..."),
inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
).then(
fn=simulate_recording_delay, inputs=[], outputs=[], queue=False
).then(
fn=lambda: (gr.update(visible=True), gr.update(visible=False), "ποΈ Processing recording..."),
inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
).then(
fn=transcribe_audio, inputs=audio_input, outputs=[txt, hint_box, txt, combined_btn, is_voice_chat, fact_check_btn_row], queue=False
).then(
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
).then(
fn=chat_generator, inputs=[txt, staged_image, chatbot, stop_signal, is_voice_chat], outputs=output_components, queue=True
).then(
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
)
generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]
txt.submit(fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False).then(
fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
).then(fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False)
combined_btn.click(fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False).then(
fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
).then(fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False)
btn_fact_check.click(fn=manual_fact_check, inputs=[chatbot], outputs=[chatbot, hint_box, fact_check_btn_row], queue=True)
demo.queue(max_size=20).launch(server_name="0.0.0.0")
|