Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# --- (Import statements remain the same) ---
|
| 2 |
import gradio as gr
|
| 3 |
import os
|
| 4 |
import time
|
|
@@ -15,36 +14,44 @@ from diffusers import StableDiffusionPipeline
|
|
| 15 |
from docx import Document
|
| 16 |
from pptx import Presentation
|
| 17 |
from io import BytesIO
|
| 18 |
-
import numpy as np
|
| 19 |
|
| 20 |
-
# ---
|
| 21 |
-
STT_DEVICE = "cpu"
|
| 22 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 23 |
AUDIO_DIR = "audio_outputs"
|
| 24 |
-
DOC_DIR = "doc_outputs"
|
| 25 |
if not os.path.exists(AUDIO_DIR):
|
| 26 |
os.makedirs(AUDIO_DIR)
|
| 27 |
if not os.path.exists(DOC_DIR):
|
| 28 |
os.makedirs(DOC_DIR)
|
| 29 |
REPO_ID = "cosmosai471/Luna-v3"
|
| 30 |
MODEL_FILE = "luna.gguf"
|
| 31 |
-
LOCAL_MODEL_PATH = MODEL_FILE
|
| 32 |
SYSTEM_PROMPT = "You are Luna, a helpful and friendly AI assistant. Your response must begin with two separate tags: an **Intent** tag and a **Confidence** tag (0-100). Example: '[Intent: qa_general][Confidence: 85]'. Your full response must follow these tags."
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
llm = None
|
| 35 |
try:
|
| 36 |
print(f"Downloading {MODEL_FILE} from {REPO_ID}...")
|
| 37 |
hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE, local_dir=".")
|
| 38 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
| 39 |
raise FileNotFoundError(f"Download failed for {MODEL_FILE}")
|
| 40 |
-
|
| 41 |
print("Initializing Llama...")
|
| 42 |
llm = Llama(
|
| 43 |
model_path=LOCAL_MODEL_PATH,
|
| 44 |
-
n_ctx=8192,
|
| 45 |
-
n_threads=4,
|
| 46 |
-
n_batch=256,
|
| 47 |
-
n_gpu_layers=0,
|
| 48 |
verbose=False
|
| 49 |
)
|
| 50 |
print("β
Luna Model loaded successfully!")
|
|
@@ -64,7 +71,7 @@ except Exception as e:
|
|
| 64 |
|
| 65 |
image_pipe = None
|
| 66 |
try:
|
| 67 |
-
VLM_MODEL_ID = "llava-hf/llava-1.5-7b-hf"
|
| 68 |
image_pipe = pipeline("image-to-text", model=VLM_MODEL_ID, device=STT_DEVICE)
|
| 69 |
print(f"β
Loaded {VLM_MODEL_ID} for image processing.")
|
| 70 |
except Exception as e:
|
|
@@ -73,43 +80,37 @@ except Exception as e:
|
|
| 73 |
img_gen_pipe = None
|
| 74 |
try:
|
| 75 |
img_gen_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32)
|
| 76 |
-
img_gen_pipe.to(STT_DEVICE)
|
| 77 |
print("β
Loaded Stable Diffusion (v1-5) for image generation.")
|
| 78 |
except Exception as e:
|
| 79 |
print(f"β οΈ Could not load Image Generation pipeline. Image generation disabled. Error: {e}")
|
| 80 |
|
|
|
|
| 81 |
# --- UTILITY FUNCTIONS ---
|
| 82 |
|
| 83 |
def simulate_recording_delay():
|
| 84 |
time.sleep(3)
|
| 85 |
-
return None
|
| 86 |
|
| 87 |
def clean_response_stream(raw_text: str) -> str:
|
| 88 |
"""Cleans up raw response text by removing tags and repeats."""
|
| 89 |
clean_text = re.split(r'\nUser:|\nAssistant:|</s>|Intent|Action', raw_text, 1)[0].strip()
|
| 90 |
clean_text = re.sub(r'\[/?INST\]|\[/?s\]|\s*<action>.*?</action>\s*', '', clean_text, flags=re.DOTALL).strip()
|
| 91 |
-
# Remove Intent and Confidence tags specifically for display
|
| 92 |
clean_text = re.sub(r'\[Intent:\s*\w+\]|\[Confidence:\s*\d+\]', '', clean_text).strip()
|
| 93 |
words = clean_text.split()
|
| 94 |
-
if len(words) > 4 and words[-2:] == words[-4:-2]:
|
| 95 |
clean_text = ' '.join(words[:-2])
|
| 96 |
return clean_text
|
| 97 |
|
| 98 |
def web_search_tool(query: str) -> str:
|
| 99 |
-
time.sleep(1.5)
|
| 100 |
print(f"Simulating Google Search fallback for: {query}")
|
| 101 |
return f"\n\nπ **Web Search Results for '{query}':** I've gathered information from external sources to supplement my knowledge."
|
| 102 |
|
| 103 |
-
# FIX: Confidence check operates on RAW response string
|
| 104 |
def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
|
| 105 |
-
"""
|
| 106 |
-
Checks confidence from the raw response tag. Triggers fallback if low.
|
| 107 |
-
Returns the *cleaned* response (or augmented one).
|
| 108 |
-
"""
|
| 109 |
confidence_match = re.search(r'\[Confidence:\s*(\d+)\]', raw_response_with_tags)
|
| 110 |
confidence_score = int(confidence_match.group(1)) if confidence_match else 0
|
| 111 |
-
|
| 112 |
-
# Always clean the response *after* parsing confidence
|
| 113 |
cleaned_response = clean_response_stream(raw_response_with_tags)
|
| 114 |
|
| 115 |
if confidence_score < 70:
|
|
@@ -118,20 +119,13 @@ def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> st
|
|
| 118 |
if "error" in cleaned_response.lower() or confidence_score == 0:
|
| 119 |
final_response = f"I apologize for the limited response (Confidence: {confidence_score}%). {search_snippet} I will use this to generate a more comprehensive answer."
|
| 120 |
else:
|
| 121 |
-
# Append search results to the existing (low confidence) cleaned response
|
| 122 |
final_response = f"{cleaned_response} {search_snippet} I can elaborate further based on this."
|
| 123 |
else:
|
| 124 |
-
# High confidence, return the already cleaned response
|
| 125 |
final_response = cleaned_response
|
| 126 |
-
|
| 127 |
return final_response
|
| 128 |
|
| 129 |
-
# FIX: Correct VQA prompt format and error handling
|
| 130 |
def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
| 131 |
-
"""
|
| 132 |
-
Uses the VLM pipeline (LLaVA) for VQA.
|
| 133 |
-
Returns the prompt injection string and a boolean indicating success.
|
| 134 |
-
"""
|
| 135 |
global image_pipe
|
| 136 |
success = False
|
| 137 |
if image_pipe is None:
|
|
@@ -141,36 +135,27 @@ def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
|
| 141 |
try:
|
| 142 |
if isinstance(image_data_or_path, str):
|
| 143 |
image = Image.open(image_data_or_path).convert("RGB")
|
| 144 |
-
elif isinstance(image_data_or_path, np.ndarray):
|
| 145 |
image = Image.fromarray(image_data_or_path).convert("RGB")
|
| 146 |
|
| 147 |
if image:
|
| 148 |
-
# FIX: Use the specific format required by llava-hf/llava-1.5-7b-hf
|
| 149 |
vqa_prompt = f"USER: <image>\n{message}\nASSISTANT:"
|
| 150 |
-
|
| 151 |
-
# Increased max_new_tokens for potentially longer VQA responses
|
| 152 |
results = image_pipe(image, prompt=vqa_prompt, generate_kwargs={"max_new_tokens": 1024})
|
| 153 |
raw_vlm_output = results[0]['generated_text'] if results else "Error: VLM did not return text."
|
| 154 |
-
|
| 155 |
-
# Extract just the assistant's part
|
| 156 |
vqa_response = raw_vlm_output.split("ASSISTANT:")[-1].strip()
|
| 157 |
-
if not vqa_response:
|
| 158 |
-
vqa_response = "VLM analysis failed or returned empty."
|
| 159 |
|
| 160 |
del image
|
| 161 |
success = True
|
| 162 |
prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {message}"
|
| 163 |
return prompt_injection, success
|
| 164 |
-
|
| 165 |
except Exception as e:
|
| 166 |
print(f"Image Pipeline Error: {e}")
|
| 167 |
return f"[Image Processing Error: {e}] **User Query:** {message}", success
|
| 168 |
-
|
| 169 |
-
# If image processing failed before VLM call
|
| 170 |
return f"[Image Processing Error: Could not load image data.] **User Query:** {message}", success
|
| 171 |
|
| 172 |
-
|
| 173 |
-
# --- (transcribe_audio, text_to_audio remain the same) ---
|
| 174 |
def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
|
| 175 |
if stt_pipe is None or audio_file_path is None:
|
| 176 |
error_msg = "Error: Whisper model failed to load or no audio recorded."
|
|
@@ -179,11 +164,11 @@ def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.upda
|
|
| 179 |
transcribed_text = stt_pipe(audio_file_path)["text"]
|
| 180 |
new_button_update = gr.update(value="β", interactive=True, elem_classes=["circle-btn", "send-mode"])
|
| 181 |
return (
|
| 182 |
-
transcribed_text.strip(),
|
| 183 |
-
f"ποΈ Transcribed: '{transcribed_text.strip()}'",
|
| 184 |
-
gr.update(interactive=True),
|
| 185 |
-
new_button_update,
|
| 186 |
-
True,
|
| 187 |
gr.update(visible=False)
|
| 188 |
)
|
| 189 |
except Exception as e:
|
|
@@ -192,20 +177,19 @@ def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.upda
|
|
| 192 |
|
| 193 |
def text_to_audio(text: str, is_voice_chat: bool) -> str or None:
|
| 194 |
if not is_voice_chat:
|
| 195 |
-
return None
|
| 196 |
-
clean_text = re.sub(r'```.*?```|\[Image Processing Error:.*?\]|\*\*Web Search Results:.*?$|\(file=.*?\)', '', text, flags=re.DOTALL | re.MULTILINE)
|
| 197 |
if len(clean_text.strip()) > 5:
|
| 198 |
try:
|
| 199 |
audio_output_path = os.path.join(AUDIO_DIR, f"luna_response_{random.randint(1000, 9999)}.mp3")
|
| 200 |
tts = gTTS(text=clean_text.strip(), lang='en')
|
| 201 |
tts.save(audio_output_path)
|
| 202 |
-
return audio_output_path
|
| 203 |
except Exception as e:
|
| 204 |
print(f"gTTS Error: {e}")
|
| 205 |
return None
|
| 206 |
return None
|
| 207 |
|
| 208 |
-
# --- (INTENT_STATUS_MAP remains the same) ---
|
| 209 |
INTENT_STATUS_MAP = {
|
| 210 |
"code_generate": "Analyzing requirements and drafting code π»...",
|
| 211 |
"code_explain": "Reviewing code logic and writing explanation π‘...",
|
|
@@ -220,29 +204,17 @@ INTENT_STATUS_MAP = {
|
|
| 220 |
"default": "Luna is thinking...",
|
| 221 |
}
|
| 222 |
|
| 223 |
-
|
| 224 |
-
# FIX: Updated get_intent_status to force VQA intent more reliably
|
| 225 |
def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
|
| 226 |
"""Parses intent/confidence, returns intent, status, cleaned text."""
|
| 227 |
-
|
| 228 |
-
# 1. Parse Intent
|
| 229 |
match = re.search(r'\[Intent:\s*(\w+)\]', raw_response, re.IGNORECASE)
|
| 230 |
intent = match.group(1).lower() if match else "default"
|
| 231 |
-
|
| 232 |
-
# FIX: Force 'vqa' intent if the flow started with an image, regardless of model output
|
| 233 |
if is_vqa_flow:
|
| 234 |
intent = "vqa"
|
| 235 |
-
|
| 236 |
-
# 2. Clean Text (remove both tags for display)
|
| 237 |
cleaned_text = re.sub(r'\[Intent:\s*\w+\]\s*', '', raw_response, count=1).strip()
|
| 238 |
cleaned_text = re.sub(r'\[Confidence:\s*\d+\]\s*', '', cleaned_text, count=1).strip()
|
| 239 |
-
|
| 240 |
-
# 3. Get Status
|
| 241 |
status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
|
| 242 |
return intent, status, cleaned_text
|
| 243 |
|
| 244 |
-
|
| 245 |
-
# --- (generate_file_content remains the same) ---
|
| 246 |
def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
|
| 247 |
"""Generates a file (Image, DOCX, PPTX) and returns the file path for download."""
|
| 248 |
file_path = None
|
|
@@ -282,60 +254,51 @@ def generate_file_content(content: str, history: List[Dict[str, str]], file_type
|
|
| 282 |
|
| 283 |
# --- CORE GENERATOR FUNCTION ---
|
| 284 |
def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
|
| 285 |
-
"""Main generator function for streaming LLM response."""
|
| 286 |
# Component Outputs: [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output (INVISIBLE)]
|
| 287 |
|
| 288 |
-
# 1. INITIAL HISTORY CHECK
|
| 289 |
if len(history) < 2 or history[-1]['role'] != 'assistant' or history[-1]['content'] != "":
|
| 290 |
yield history, False, "Error: Generator called in unexpected state.", gr.update(interactive=True), gr.update(value="β", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 291 |
return
|
| 292 |
|
| 293 |
-
# 2. PRE-PROCESSING & CONTEXT
|
| 294 |
last_user_index = len(history) - 2
|
| 295 |
-
original_message = history[last_user_index]['content']
|
| 296 |
|
| 297 |
-
# FIX: Robust check for image/file presence using isinstance and None check.
|
| 298 |
is_vqa_flow = False
|
| 299 |
-
if isinstance(image_input_data, str):
|
| 300 |
is_vqa_flow = image_input_data != ""
|
| 301 |
-
elif isinstance(image_input_data, np.ndarray):
|
| 302 |
-
is_vqa_flow = image_input_data.size > 0
|
| 303 |
-
else:
|
| 304 |
is_vqa_flow = image_input_data is not None
|
| 305 |
|
| 306 |
vqa_success = False
|
| 307 |
if is_vqa_flow:
|
| 308 |
-
# Process image/VQA
|
| 309 |
processed_message, vqa_success = process_image(image_input_data, original_message)
|
| 310 |
-
# Update user message in history to show it was an image prompt
|
| 311 |
history[last_user_index]['content'] = f"[IMAGE RECEIVED] {original_message}"
|
| 312 |
-
# Use the VQA-enriched message for the LLM prompt
|
| 313 |
llm_input_message = processed_message
|
| 314 |
else:
|
| 315 |
llm_input_message = original_message
|
| 316 |
-
image_input_data = None
|
| 317 |
|
| 318 |
-
# Build the final prompt string for the LLM
|
| 319 |
prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
|
| 320 |
-
for item in history[:-1]:
|
| 321 |
role = item['role'].upper()
|
| 322 |
content = item['content'] if item['content'] is not None else ""
|
| 323 |
if role == "ASSISTANT": prompt += f"LUNA: {content}\n"
|
| 324 |
elif role == "USER": prompt += f"USER: {content}\n"
|
| 325 |
-
prompt += f"USER: {llm_input_message}\nLUNA: "
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
history[-1]['content'] = "" # Initialize assistant content
|
| 330 |
yield history, stop_signal, hint_text, gr.update(value="", interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 331 |
-
time.sleep(0.5)
|
| 332 |
|
| 333 |
-
# 4. DIRECT STREAMING
|
| 334 |
full_response = ""
|
| 335 |
-
current_intent = "default"
|
|
|
|
| 336 |
try:
|
| 337 |
stream = llm.create_completion(
|
| 338 |
-
prompt=prompt, max_tokens=8192,
|
| 339 |
stop=["USER:", "SYSTEM:", "</s>"],
|
| 340 |
echo=False, stream=True, temperature=0.7
|
| 341 |
)
|
|
@@ -349,9 +312,8 @@ def chat_generator(message_from_input: str, image_input_data: Any, history: List
|
|
| 349 |
for output in stream:
|
| 350 |
token = output["choices"][0].get("text", "")
|
| 351 |
full_response += token
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
history[-1]['content'] = display_text # Update chat display
|
| 355 |
yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 356 |
except Exception as e:
|
| 357 |
_, _, final_response_text = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
|
@@ -362,9 +324,8 @@ def chat_generator(message_from_input: str, image_input_data: Any, history: List
|
|
| 362 |
|
| 363 |
# 5. POST-PROCESSING & TOOL EXECUTION
|
| 364 |
file_download_path = None
|
| 365 |
-
_, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 366 |
|
| 367 |
-
# 5a. File Generation/Tool Action based on final intent
|
| 368 |
if current_intent == "image_generate":
|
| 369 |
yield history, stop_signal, INTENT_STATUS_MAP[current_intent], gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 370 |
history, file_download_path = generate_file_content(content_for_tool, history, "image")
|
|
@@ -376,45 +337,33 @@ def chat_generator(message_from_input: str, image_input_data: Any, history: List
|
|
| 376 |
history, file_download_path = generate_file_content(content_for_tool, history, "ppt")
|
| 377 |
elif current_intent == "open_google":
|
| 378 |
final_cleaned_response = content_for_tool + "\n\nπ **Action:** [Search Google](https://www.google.com/search?q=open+google+simulated+search)"
|
| 379 |
-
history[-1]['content'] = final_cleaned_response
|
| 380 |
elif current_intent == "open_camera":
|
| 381 |
final_cleaned_response = content_for_tool + "\n\nπΈ **Action:** Use the 'Google Lens' button to capture an image."
|
| 382 |
-
history[-1]['content'] = final_cleaned_response
|
| 383 |
|
| 384 |
-
# 5b. Confidence Check (only if NOT a tool intent)
|
| 385 |
TOOL_EXECUTION_INTENTS = ["image_generate", "doc_generate", "ppt_generate", "open_google", "open_camera", "vqa"]
|
| 386 |
if current_intent not in TOOL_EXECUTION_INTENTS:
|
| 387 |
-
# Pass the RAW full_response (with tags) to confidence checker
|
| 388 |
final_response_content = check_confidence_and_augment(full_response, original_message)
|
| 389 |
-
history[-1]['content'] = final_response_content
|
| 390 |
else:
|
| 391 |
-
# If it was a tool intent, the content is already set (or cleaned implicitly)
|
| 392 |
final_response_content = history[-1]['content']
|
| 393 |
|
| 394 |
-
|
| 395 |
-
audio_file_path = text_to_audio(final_response_content, is_voice_chat)
|
| 396 |
|
| 397 |
-
# 6. FINAL YIELD
|
| 398 |
hint = "β
Response generated."
|
| 399 |
-
# We yield the path to the hidden file component to make it downloadable
|
| 400 |
-
# We yield None to staged_image state to clear it *after* generation
|
| 401 |
yield history, False, hint, gr.update(interactive=True), gr.update(value="β", interactive=True), audio_file_path, False, gr.update(visible=True), gr.update(value=None), gr.update(), file_download_path
|
| 402 |
|
| 403 |
|
| 404 |
# --- GRADIO WRAPPERS FOR UI ACTIONS ---
|
| 405 |
|
| 406 |
def toggle_menu(current_visibility: bool) -> Tuple[bool, gr.update, gr.update, gr.update]:
|
| 407 |
-
new_visibility = not current_visibility
|
| 408 |
return new_visibility, gr.update(visible=new_visibility), gr.update(visible=False), gr.update(value="β¬οΈ" if new_visibility else "β")
|
| 409 |
|
| 410 |
-
# FIX: user_turn now only adds history if input exists, DOES NOT clear staged_image
|
| 411 |
def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
|
| 412 |
-
"""
|
| 413 |
-
Appends the user message to the chat history if text or image is provided.
|
| 414 |
-
Clears the input box. Does NOT clear the staged_image state here.
|
| 415 |
-
"""
|
| 416 |
has_text = bool(user_message)
|
| 417 |
-
# Robust check for image presence
|
| 418 |
has_image = False
|
| 419 |
if isinstance(staged_image_input, str):
|
| 420 |
has_image = staged_image_input != ""
|
|
@@ -423,25 +372,20 @@ def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_imag
|
|
| 423 |
else:
|
| 424 |
has_image = staged_image_input is not None
|
| 425 |
|
| 426 |
-
# If no input, do nothing
|
| 427 |
if not has_text and not has_image:
|
| 428 |
-
return user_message, chat_history
|
| 429 |
|
| 430 |
-
# If the last turn is still generating, do nothing to prevent race conditions
|
| 431 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
|
| 432 |
return user_message, chat_history
|
| 433 |
|
| 434 |
-
# Determine message content
|
| 435 |
if not has_text and has_image:
|
| 436 |
user_message_to_add = "Analyzing Staged Media."
|
| 437 |
else:
|
| 438 |
user_message_to_add = user_message
|
| 439 |
|
| 440 |
-
|
| 441 |
-
chat_history.append({"role": "
|
| 442 |
-
chat_history.append({"role": "assistant", "content": ""}) # Add placeholder
|
| 443 |
|
| 444 |
-
# Clear only the text input box
|
| 445 |
return "", chat_history
|
| 446 |
|
| 447 |
def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
@@ -449,12 +393,10 @@ def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
| 449 |
return file_path, f"π File staged: {os.path.basename(file_path)}. Click send (βοΈ).", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 450 |
return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 451 |
|
| 452 |
-
# FIX: Reinstate clear_staged_media
|
| 453 |
def clear_staged_media() -> gr.update:
|
| 454 |
"""Clears the staged media state component."""
|
| 455 |
return gr.update(value=None)
|
| 456 |
|
| 457 |
-
# --- (manual_fact_check, auto_capture_camera remain largely the same, ensure they use history format correctly) ---
|
| 458 |
def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
|
| 459 |
if not history or not history[-1]['content']:
|
| 460 |
return history, "Error: No final response to check.", gr.update(visible=False)
|
|
@@ -470,44 +412,41 @@ def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str
|
|
| 470 |
return new_history, "β
Double-checked with web facts.", gr.update(visible=False)
|
| 471 |
|
| 472 |
def auto_capture_camera(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]], Any, gr.update, gr.update, gr.update, gr.update, gr.update]:
|
| 473 |
-
|
| 474 |
-
_, chat_history = user_turn(user_message, chat_history, staged_image_input) # Pass staged image
|
| 475 |
-
# Update the last assistant response placeholder with a status message
|
| 476 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
|
| 477 |
chat_history[-1]['content'] = "πΈ Preparing camera capture..."
|
| 478 |
-
# Update UI to show the webcam (start capture simulation)
|
| 479 |
-
# Note: staged_image is NOT cleared here by user_turn
|
| 480 |
return "", chat_history, staged_image_input, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value="πΈ Capturing in 3 seconds...", interactive=False), gr.update(value="β")
|
| 481 |
|
| 482 |
|
| 483 |
# --- GRADIO INTERFACE ---
|
| 484 |
|
| 485 |
with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
| 486 |
-
|
| 487 |
-
# ---
|
| 488 |
stop_signal = gr.State(value=False)
|
| 489 |
-
is_voice_chat = gr.State(value=False)
|
| 490 |
-
staged_image = gr.State(value=None)
|
| 491 |
menu_visible_state = gr.State(value=False)
|
| 492 |
-
|
| 493 |
gr.HTML("<h1 style='text-align: center; color: #4B0082;'>π Luna Chat Space</h1>")
|
| 494 |
-
|
| 495 |
-
|
|
|
|
| 496 |
|
| 497 |
with gr.Row(visible=False) as fact_check_btn_row:
|
| 498 |
gr.Column(min_width=1); btn_fact_check = gr.Button("Fact Check π"); gr.Column(min_width=1)
|
| 499 |
|
| 500 |
-
chatbot = gr.Chatbot(label="Luna", height=500, type='messages')
|
| 501 |
-
|
| 502 |
with gr.Row(visible=False) as webcam_capture_row:
|
| 503 |
webcam_capture_component = gr.Image(sources=["webcam"], type="numpy", show_label=False)
|
| 504 |
close_webcam_btn = gr.Button("β
Use this image")
|
| 505 |
-
|
| 506 |
with gr.Row(visible=False) as audio_record_row:
|
| 507 |
audio_input = gr.Audio(sources=["microphone"], type="filepath", show_label=False)
|
| 508 |
-
|
| 509 |
with gr.Column(visible=False, elem_id="menu_options_row") as menu_options_row:
|
| 510 |
-
file_input = gr.File(type="filepath", label="File Uploader", interactive=False)
|
| 511 |
btn_take_photo = gr.Button("πΈ Google Lens (Take Photo)")
|
| 512 |
btn_add_files = gr.Button("π Upload File")
|
| 513 |
|
|
@@ -516,79 +455,74 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
|
| 516 |
txt = gr.Textbox(placeholder="Ask anything", show_label=False, lines=1, autofocus=True)
|
| 517 |
mic_btn = gr.Button("ποΈ", interactive=True, size="sm")
|
| 518 |
combined_btn = gr.Button("βοΈ", variant="primary", size="sm")
|
|
|
|
|
|
|
| 519 |
|
| 520 |
-
audio_output = gr.Audio(visible=False)
|
| 521 |
-
|
| 522 |
-
# Output components list now reflects the hidden file component
|
| 523 |
output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]
|
| 524 |
|
| 525 |
# --- WIRE EVENTS ---
|
| 526 |
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
| 529 |
def prepare_file_upload(): return gr.update(visible=False), gr.update(value="β"), gr.update(visible=False), gr.update(interactive=True), gr.update(value="")
|
| 530 |
btn_add_files.click(fn=prepare_file_upload, inputs=[], outputs=[menu_options_row, btn_menu, fact_check_btn_row, file_input, txt], queue=False)
|
| 531 |
-
|
| 532 |
-
|
|
|
|
|
|
|
| 533 |
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
close_webcam_btn.click(
|
| 536 |
fn=lambda img: (gr.update(visible=True), gr.update(visible=False), img, f"πΈ Photo staged: Click send (βοΈ).", gr.update(value="")),
|
| 537 |
-
inputs=[webcam_capture_component],
|
| 538 |
-
outputs=[input_row, webcam_capture_row, staged_image, hint_box, txt], # staged_image gets the NumPy array here
|
| 539 |
-
queue=False
|
| 540 |
)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
.then(fn=lambda: (gr.update(visible=True), gr.update(visible=False), "ποΈ Processing..."), inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False)\
|
| 546 |
-
.then(fn=transcribe_audio, inputs=audio_input, outputs=[txt, hint_box, txt, combined_btn, is_voice_chat, fact_check_btn_row], queue=False)\
|
| 547 |
-
.then(fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False) # staged_image is passed but not modified here
|
| 548 |
-
.then(
|
| 549 |
-
fn=chat_generator,
|
| 550 |
-
inputs=[txt, staged_image, chatbot, stop_signal, is_voice_chat], # staged_image is read here
|
| 551 |
-
outputs=output_components,
|
| 552 |
-
queue=True,
|
| 553 |
).then(
|
| 554 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
)
|
| 556 |
|
| 557 |
-
|
| 558 |
-
# Main Submission Logic
|
| 559 |
-
# FIX: Pass staged_image to user_turn, but DO NOT modify it there.
|
| 560 |
-
# Clear staged_image using clear_staged_media *after* chat_generator runs.
|
| 561 |
generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]
|
| 562 |
-
|
|
|
|
| 563 |
txt.submit(
|
| 564 |
-
fn=user_turn,
|
| 565 |
-
inputs=[txt, chatbot, staged_image], # Pass staged_image state
|
| 566 |
-
outputs=[txt, chatbot], # user_turn only outputs text and history
|
| 567 |
-
queue=False
|
| 568 |
).then(
|
| 569 |
-
fn=chat_generator,
|
| 570 |
-
inputs=generator_inputs, # Use the state value here
|
| 571 |
-
outputs=output_components,
|
| 572 |
-
queue=True,
|
| 573 |
).then(
|
| 574 |
-
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 575 |
)
|
| 576 |
-
|
|
|
|
| 577 |
combined_btn.click(
|
| 578 |
-
fn=user_turn,
|
| 579 |
-
inputs=[txt, chatbot, staged_image], # Pass staged_image state
|
| 580 |
-
outputs=[txt, chatbot], # user_turn only outputs text and history
|
| 581 |
-
queue=False
|
| 582 |
).then(
|
| 583 |
-
fn=chat_generator,
|
| 584 |
-
inputs=generator_inputs, # Use the state value here
|
| 585 |
-
outputs=output_components,
|
| 586 |
-
queue=True,
|
| 587 |
).then(
|
| 588 |
-
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
)
|
| 590 |
|
| 591 |
-
|
| 592 |
-
btn_fact_check.click(fn=manual_fact_check, inputs=[chatbot], outputs=[chatbot, hint_box, fact_check_btn_row], queue=True)
|
| 593 |
-
|
| 594 |
-
demo.queue(max_size=20).launch(server_name="0.0.0.0")
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
import time
|
|
|
|
| 14 |
from docx import Document
|
| 15 |
from pptx import Presentation
|
| 16 |
from io import BytesIO
|
| 17 |
+
import numpy as np
|
| 18 |
|
| 19 |
+
# --- CONFIGURATION & INITIALIZATION ---
|
| 20 |
+
STT_DEVICE = "cpu"
|
| 21 |
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
|
| 22 |
AUDIO_DIR = "audio_outputs"
|
| 23 |
+
DOC_DIR = "doc_outputs"
|
| 24 |
if not os.path.exists(AUDIO_DIR):
|
| 25 |
os.makedirs(AUDIO_DIR)
|
| 26 |
if not os.path.exists(DOC_DIR):
|
| 27 |
os.makedirs(DOC_DIR)
|
| 28 |
REPO_ID = "cosmosai471/Luna-v3"
|
| 29 |
MODEL_FILE = "luna.gguf"
|
| 30 |
+
LOCAL_MODEL_PATH = MODEL_FILE
|
| 31 |
SYSTEM_PROMPT = "You are Luna, a helpful and friendly AI assistant. Your response must begin with two separate tags: an **Intent** tag and a **Confidence** tag (0-100). Example: '[Intent: qa_general][Confidence: 85]'. Your full response must follow these tags."
|
| 32 |
+
|
| 33 |
+
def safe_del(self):
|
| 34 |
+
try:
|
| 35 |
+
if hasattr(self, "close") and callable(self.close):
|
| 36 |
+
self.close()
|
| 37 |
+
except Exception:
|
| 38 |
+
pass
|
| 39 |
+
Llama.__del__ = safe_del
|
| 40 |
+
|
| 41 |
+
# --- MODEL LOADING ---
|
| 42 |
llm = None
|
| 43 |
try:
|
| 44 |
print(f"Downloading {MODEL_FILE} from {REPO_ID}...")
|
| 45 |
hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE, local_dir=".")
|
| 46 |
if not os.path.exists(LOCAL_MODEL_PATH):
|
| 47 |
raise FileNotFoundError(f"Download failed for {MODEL_FILE}")
|
|
|
|
| 48 |
print("Initializing Llama...")
|
| 49 |
llm = Llama(
|
| 50 |
model_path=LOCAL_MODEL_PATH,
|
| 51 |
+
n_ctx=8192,
|
| 52 |
+
n_threads=4,
|
| 53 |
+
n_batch=256,
|
| 54 |
+
n_gpu_layers=0,
|
| 55 |
verbose=False
|
| 56 |
)
|
| 57 |
print("β
Luna Model loaded successfully!")
|
|
|
|
| 71 |
|
| 72 |
image_pipe = None
|
| 73 |
try:
|
| 74 |
+
VLM_MODEL_ID = "llava-hf/llava-1.5-7b-hf"
|
| 75 |
image_pipe = pipeline("image-to-text", model=VLM_MODEL_ID, device=STT_DEVICE)
|
| 76 |
print(f"β
Loaded {VLM_MODEL_ID} for image processing.")
|
| 77 |
except Exception as e:
|
|
|
|
| 80 |
img_gen_pipe = None
|
| 81 |
try:
|
| 82 |
img_gen_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32)
|
| 83 |
+
img_gen_pipe.to(STT_DEVICE)
|
| 84 |
print("β
Loaded Stable Diffusion (v1-5) for image generation.")
|
| 85 |
except Exception as e:
|
| 86 |
print(f"β οΈ Could not load Image Generation pipeline. Image generation disabled. Error: {e}")
|
| 87 |
|
| 88 |
+
|
| 89 |
# --- UTILITY FUNCTIONS ---
|
| 90 |
|
| 91 |
def simulate_recording_delay():
|
| 92 |
time.sleep(3)
|
| 93 |
+
return None
|
| 94 |
|
| 95 |
def clean_response_stream(raw_text: str) -> str:
|
| 96 |
"""Cleans up raw response text by removing tags and repeats."""
|
| 97 |
clean_text = re.split(r'\nUser:|\nAssistant:|</s>|Intent|Action', raw_text, 1)[0].strip()
|
| 98 |
clean_text = re.sub(r'\[/?INST\]|\[/?s\]|\s*<action>.*?</action>\s*', '', clean_text, flags=re.DOTALL).strip()
|
|
|
|
| 99 |
clean_text = re.sub(r'\[Intent:\s*\w+\]|\[Confidence:\s*\d+\]', '', clean_text).strip()
|
| 100 |
words = clean_text.split()
|
| 101 |
+
if len(words) > 4 and words[-2:] == words[-4:-2]:
|
| 102 |
clean_text = ' '.join(words[:-2])
|
| 103 |
return clean_text
|
| 104 |
|
| 105 |
def web_search_tool(query: str) -> str:
|
| 106 |
+
time.sleep(1.5)
|
| 107 |
print(f"Simulating Google Search fallback for: {query}")
|
| 108 |
return f"\n\nπ **Web Search Results for '{query}':** I've gathered information from external sources to supplement my knowledge."
|
| 109 |
|
|
|
|
| 110 |
def check_confidence_and_augment(raw_response_with_tags: str, prompt: str) -> str:
|
| 111 |
+
"""Checks confidence from the raw response tag. Triggers fallback if low."""
|
|
|
|
|
|
|
|
|
|
| 112 |
confidence_match = re.search(r'\[Confidence:\s*(\d+)\]', raw_response_with_tags)
|
| 113 |
confidence_score = int(confidence_match.group(1)) if confidence_match else 0
|
|
|
|
|
|
|
| 114 |
cleaned_response = clean_response_stream(raw_response_with_tags)
|
| 115 |
|
| 116 |
if confidence_score < 70:
|
|
|
|
| 119 |
if "error" in cleaned_response.lower() or confidence_score == 0:
|
| 120 |
final_response = f"I apologize for the limited response (Confidence: {confidence_score}%). {search_snippet} I will use this to generate a more comprehensive answer."
|
| 121 |
else:
|
|
|
|
| 122 |
final_response = f"{cleaned_response} {search_snippet} I can elaborate further based on this."
|
| 123 |
else:
|
|
|
|
| 124 |
final_response = cleaned_response
|
|
|
|
| 125 |
return final_response
|
| 126 |
|
|
|
|
| 127 |
def process_image(image_data_or_path: Any, message: str) -> Tuple[str, bool]:
|
| 128 |
+
"""Uses the VLM pipeline (LLaVA) for VQA."""
|
|
|
|
|
|
|
|
|
|
| 129 |
global image_pipe
|
| 130 |
success = False
|
| 131 |
if image_pipe is None:
|
|
|
|
| 135 |
try:
|
| 136 |
if isinstance(image_data_or_path, str):
|
| 137 |
image = Image.open(image_data_or_path).convert("RGB")
|
| 138 |
+
elif isinstance(image_data_or_path, np.ndarray):
|
| 139 |
image = Image.fromarray(image_data_or_path).convert("RGB")
|
| 140 |
|
| 141 |
if image:
|
|
|
|
| 142 |
vqa_prompt = f"USER: <image>\n{message}\nASSISTANT:"
|
|
|
|
|
|
|
| 143 |
results = image_pipe(image, prompt=vqa_prompt, generate_kwargs={"max_new_tokens": 1024})
|
| 144 |
raw_vlm_output = results[0]['generated_text'] if results else "Error: VLM did not return text."
|
|
|
|
|
|
|
| 145 |
vqa_response = raw_vlm_output.split("ASSISTANT:")[-1].strip()
|
| 146 |
+
if not vqa_response: vqa_response = "VLM analysis failed or returned empty."
|
|
|
|
| 147 |
|
| 148 |
del image
|
| 149 |
success = True
|
| 150 |
prompt_injection = f"**VQA Analysis:** {vqa_response}\n\n**User Query:** {message}"
|
| 151 |
return prompt_injection, success
|
| 152 |
+
|
| 153 |
except Exception as e:
|
| 154 |
print(f"Image Pipeline Error: {e}")
|
| 155 |
return f"[Image Processing Error: {e}] **User Query:** {message}", success
|
| 156 |
+
|
|
|
|
| 157 |
return f"[Image Processing Error: Could not load image data.] **User Query:** {message}", success
|
| 158 |
|
|
|
|
|
|
|
| 159 |
def transcribe_audio(audio_file_path: str) -> Tuple[str, str, gr.update, gr.update, bool, gr.update]:
|
| 160 |
if stt_pipe is None or audio_file_path is None:
|
| 161 |
error_msg = "Error: Whisper model failed to load or no audio recorded."
|
|
|
|
| 164 |
transcribed_text = stt_pipe(audio_file_path)["text"]
|
| 165 |
new_button_update = gr.update(value="β", interactive=True, elem_classes=["circle-btn", "send-mode"])
|
| 166 |
return (
|
| 167 |
+
transcribed_text.strip(),
|
| 168 |
+
f"ποΈ Transcribed: '{transcribed_text.strip()}'",
|
| 169 |
+
gr.update(interactive=True),
|
| 170 |
+
new_button_update,
|
| 171 |
+
True,
|
| 172 |
gr.update(visible=False)
|
| 173 |
)
|
| 174 |
except Exception as e:
|
|
|
|
| 177 |
|
| 178 |
def text_to_audio(text: str, is_voice_chat: bool) -> str or None:
|
| 179 |
if not is_voice_chat:
|
| 180 |
+
return None
|
| 181 |
+
clean_text = re.sub(r'```.*?```|\[Image Processing Error:.*?\]|\*\*Web Search Results:.*?$|\(file=.*?\)', '', text, flags=re.DOTALL | re.MULTILINE)
|
| 182 |
if len(clean_text.strip()) > 5:
|
| 183 |
try:
|
| 184 |
audio_output_path = os.path.join(AUDIO_DIR, f"luna_response_{random.randint(1000, 9999)}.mp3")
|
| 185 |
tts = gTTS(text=clean_text.strip(), lang='en')
|
| 186 |
tts.save(audio_output_path)
|
| 187 |
+
return audio_output_path
|
| 188 |
except Exception as e:
|
| 189 |
print(f"gTTS Error: {e}")
|
| 190 |
return None
|
| 191 |
return None
|
| 192 |
|
|
|
|
| 193 |
INTENT_STATUS_MAP = {
|
| 194 |
"code_generate": "Analyzing requirements and drafting code π»...",
|
| 195 |
"code_explain": "Reviewing code logic and writing explanation π‘...",
|
|
|
|
| 204 |
"default": "Luna is thinking...",
|
| 205 |
}
|
| 206 |
|
|
|
|
|
|
|
| 207 |
def get_intent_status(raw_response: str, is_vqa_flow: bool) -> Tuple[str, str, str]:
|
| 208 |
"""Parses intent/confidence, returns intent, status, cleaned text."""
|
|
|
|
|
|
|
| 209 |
match = re.search(r'\[Intent:\s*(\w+)\]', raw_response, re.IGNORECASE)
|
| 210 |
intent = match.group(1).lower() if match else "default"
|
|
|
|
|
|
|
| 211 |
if is_vqa_flow:
|
| 212 |
intent = "vqa"
|
|
|
|
|
|
|
| 213 |
cleaned_text = re.sub(r'\[Intent:\s*\w+\]\s*', '', raw_response, count=1).strip()
|
| 214 |
cleaned_text = re.sub(r'\[Confidence:\s*\d+\]\s*', '', cleaned_text, count=1).strip()
|
|
|
|
|
|
|
| 215 |
status = INTENT_STATUS_MAP.get(intent, INTENT_STATUS_MAP["default"])
|
| 216 |
return intent, status, cleaned_text
|
| 217 |
|
|
|
|
|
|
|
| 218 |
def generate_file_content(content: str, history: List[Dict[str, str]], file_type: str):
|
| 219 |
"""Generates a file (Image, DOCX, PPTX) and returns the file path for download."""
|
| 220 |
file_path = None
|
|
|
|
| 254 |
|
| 255 |
# --- CORE GENERATOR FUNCTION ---
|
| 256 |
def chat_generator(message_from_input: str, image_input_data: Any, history: List[Dict[str, str]], stop_signal: bool, is_voice_chat: bool) -> Any:
|
|
|
|
| 257 |
# Component Outputs: [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output (INVISIBLE)]
|
| 258 |
|
|
|
|
| 259 |
if len(history) < 2 or history[-1]['role'] != 'assistant' or history[-1]['content'] != "":
|
| 260 |
yield history, False, "Error: Generator called in unexpected state.", gr.update(interactive=True), gr.update(value="β", interactive=True), None, False, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 261 |
return
|
| 262 |
|
|
|
|
| 263 |
last_user_index = len(history) - 2
|
| 264 |
+
original_message = history[last_user_index]['content']
|
| 265 |
|
|
|
|
| 266 |
is_vqa_flow = False
|
| 267 |
+
if isinstance(image_input_data, str):
|
| 268 |
is_vqa_flow = image_input_data != ""
|
| 269 |
+
elif isinstance(image_input_data, np.ndarray):
|
| 270 |
+
is_vqa_flow = image_input_data.size > 0
|
| 271 |
+
else:
|
| 272 |
is_vqa_flow = image_input_data is not None
|
| 273 |
|
| 274 |
vqa_success = False
|
| 275 |
if is_vqa_flow:
|
|
|
|
| 276 |
processed_message, vqa_success = process_image(image_input_data, original_message)
|
|
|
|
| 277 |
history[last_user_index]['content'] = f"[IMAGE RECEIVED] {original_message}"
|
|
|
|
| 278 |
llm_input_message = processed_message
|
| 279 |
else:
|
| 280 |
llm_input_message = original_message
|
| 281 |
+
image_input_data = None
|
| 282 |
|
|
|
|
| 283 |
prompt = f"SYSTEM: {SYSTEM_PROMPT}\n"
|
| 284 |
+
for item in history[:-1]:
|
| 285 |
role = item['role'].upper()
|
| 286 |
content = item['content'] if item['content'] is not None else ""
|
| 287 |
if role == "ASSISTANT": prompt += f"LUNA: {content}\n"
|
| 288 |
elif role == "USER": prompt += f"USER: {content}\n"
|
| 289 |
+
prompt += f"USER: {llm_input_message}\nLUNA: "
|
| 290 |
|
| 291 |
+
hint_text = "β¨ Luna is starting to think..."
|
| 292 |
+
history[-1]['content'] = ""
|
|
|
|
| 293 |
yield history, stop_signal, hint_text, gr.update(value="", interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 294 |
+
time.sleep(0.5)
|
| 295 |
|
|
|
|
| 296 |
full_response = ""
|
| 297 |
+
current_intent = "default"
|
| 298 |
+
|
| 299 |
try:
|
| 300 |
stream = llm.create_completion(
|
| 301 |
+
prompt=prompt, max_tokens=8192,
|
| 302 |
stop=["USER:", "SYSTEM:", "</s>"],
|
| 303 |
echo=False, stream=True, temperature=0.7
|
| 304 |
)
|
|
|
|
| 312 |
for output in stream:
|
| 313 |
token = output["choices"][0].get("text", "")
|
| 314 |
full_response += token
|
| 315 |
+
current_intent, current_hint, display_text = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 316 |
+
history[-1]['content'] = display_text
|
|
|
|
| 317 |
yield history, stop_signal, current_hint, gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 318 |
except Exception as e:
|
| 319 |
_, _, final_response_text = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
|
|
|
| 324 |
|
| 325 |
# 5. POST-PROCESSING & TOOL EXECUTION
|
| 326 |
file_download_path = None
|
| 327 |
+
_, _, content_for_tool = get_intent_status(full_response, is_vqa_flow and vqa_success)
|
| 328 |
|
|
|
|
| 329 |
if current_intent == "image_generate":
|
| 330 |
yield history, stop_signal, INTENT_STATUS_MAP[current_intent], gr.update(interactive=False), gr.update(value="Stop βΉοΈ", interactive=True), None, is_voice_chat, gr.update(visible=False), image_input_data, gr.update(), gr.update()
|
| 331 |
history, file_download_path = generate_file_content(content_for_tool, history, "image")
|
|
|
|
| 337 |
history, file_download_path = generate_file_content(content_for_tool, history, "ppt")
|
| 338 |
elif current_intent == "open_google":
|
| 339 |
final_cleaned_response = content_for_tool + "\n\nπ **Action:** [Search Google](https://www.google.com/search?q=open+google+simulated+search)"
|
| 340 |
+
history[-1]['content'] = final_cleaned_response
|
| 341 |
elif current_intent == "open_camera":
|
| 342 |
final_cleaned_response = content_for_tool + "\n\nπΈ **Action:** Use the 'Google Lens' button to capture an image."
|
| 343 |
+
history[-1]['content'] = final_cleaned_response
|
| 344 |
|
|
|
|
| 345 |
TOOL_EXECUTION_INTENTS = ["image_generate", "doc_generate", "ppt_generate", "open_google", "open_camera", "vqa"]
|
| 346 |
if current_intent not in TOOL_EXECUTION_INTENTS:
|
|
|
|
| 347 |
final_response_content = check_confidence_and_augment(full_response, original_message)
|
| 348 |
+
history[-1]['content'] = final_response_content
|
| 349 |
else:
|
|
|
|
| 350 |
final_response_content = history[-1]['content']
|
| 351 |
|
| 352 |
+
audio_file_path = text_to_audio(final_response_content, is_voice_chat)
|
|
|
|
| 353 |
|
|
|
|
| 354 |
hint = "β
Response generated."
|
|
|
|
|
|
|
| 355 |
yield history, False, hint, gr.update(interactive=True), gr.update(value="β", interactive=True), audio_file_path, False, gr.update(visible=True), gr.update(value=None), gr.update(), file_download_path
|
| 356 |
|
| 357 |
|
| 358 |
# --- GRADIO WRAPPERS FOR UI ACTIONS ---
|
| 359 |
|
| 360 |
def toggle_menu(current_visibility: bool) -> Tuple[bool, gr.update, gr.update, gr.update]:
|
| 361 |
+
new_visibility = not current_visibility
|
| 362 |
return new_visibility, gr.update(visible=new_visibility), gr.update(visible=False), gr.update(value="β¬οΈ" if new_visibility else "β")
|
| 363 |
|
|
|
|
| 364 |
def user_turn(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]]]:
|
| 365 |
+
"""Appends the user message to the chat history if text or image is provided."""
|
|
|
|
|
|
|
|
|
|
| 366 |
has_text = bool(user_message)
|
|
|
|
| 367 |
has_image = False
|
| 368 |
if isinstance(staged_image_input, str):
|
| 369 |
has_image = staged_image_input != ""
|
|
|
|
| 372 |
else:
|
| 373 |
has_image = staged_image_input is not None
|
| 374 |
|
|
|
|
| 375 |
if not has_text and not has_image:
|
| 376 |
+
return user_message, chat_history
|
| 377 |
|
|
|
|
| 378 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
|
| 379 |
return user_message, chat_history
|
| 380 |
|
|
|
|
| 381 |
if not has_text and has_image:
|
| 382 |
user_message_to_add = "Analyzing Staged Media."
|
| 383 |
else:
|
| 384 |
user_message_to_add = user_message
|
| 385 |
|
| 386 |
+
chat_history.append({"role": "user", "content": user_message_to_add})
|
| 387 |
+
chat_history.append({"role": "assistant", "content": ""})
|
|
|
|
| 388 |
|
|
|
|
| 389 |
return "", chat_history
|
| 390 |
|
| 391 |
def stage_file_upload(file_path: str) -> Tuple[Any, str, gr.update, gr.update]:
|
|
|
|
| 393 |
return file_path, f"π File staged: {os.path.basename(file_path)}. Click send (βοΈ).", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 394 |
return None, "File upload cancelled.", gr.update(value="", interactive=True), gr.update(interactive=False)
|
| 395 |
|
|
|
|
| 396 |
def clear_staged_media() -> gr.update:
|
| 397 |
"""Clears the staged media state component."""
|
| 398 |
return gr.update(value=None)
|
| 399 |
|
|
|
|
| 400 |
def manual_fact_check(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, gr.update]:
|
| 401 |
if not history or not history[-1]['content']:
|
| 402 |
return history, "Error: No final response to check.", gr.update(visible=False)
|
|
|
|
| 412 |
return new_history, "β
Double-checked with web facts.", gr.update(visible=False)
|
| 413 |
|
| 414 |
def auto_capture_camera(user_message: str, chat_history: List[Dict[str, str]], staged_image_input: Any) -> Tuple[str, List[Dict[str, str]], Any, gr.update, gr.update, gr.update, gr.update, gr.update]:
|
| 415 |
+
_, chat_history = user_turn(user_message, chat_history, staged_image_input)
|
|
|
|
|
|
|
| 416 |
if chat_history and chat_history[-1]['role'] == 'assistant' and chat_history[-1]['content'] == "":
|
| 417 |
chat_history[-1]['content'] = "πΈ Preparing camera capture..."
|
|
|
|
|
|
|
| 418 |
return "", chat_history, staged_image_input, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(value="πΈ Capturing in 3 seconds...", interactive=False), gr.update(value="β")
|
| 419 |
|
| 420 |
|
| 421 |
# --- GRADIO INTERFACE ---
|
| 422 |
|
| 423 |
with gr.Blocks(theme=gr.themes.Soft(), title="Luna Coding Partner") as demo:
|
| 424 |
+
|
| 425 |
+
# --- State Components ---
|
| 426 |
stop_signal = gr.State(value=False)
|
| 427 |
+
is_voice_chat = gr.State(value=False)
|
| 428 |
+
staged_image = gr.State(value=None)
|
| 429 |
menu_visible_state = gr.State(value=False)
|
| 430 |
+
|
| 431 |
gr.HTML("<h1 style='text-align: center; color: #4B0082;'>π Luna Chat Space</h1>")
|
| 432 |
+
|
| 433 |
+
hint_box = gr.Textbox(value="Ask anything", lines=1, show_label=False, interactive=False, placeholder="Luna's Action...", visible=True)
|
| 434 |
+
file_download_output = gr.File(label="Generated File", visible=False)
|
| 435 |
|
| 436 |
with gr.Row(visible=False) as fact_check_btn_row:
|
| 437 |
gr.Column(min_width=1); btn_fact_check = gr.Button("Fact Check π"); gr.Column(min_width=1)
|
| 438 |
|
| 439 |
+
chatbot = gr.Chatbot(label="Luna", height=500, type='messages')
|
| 440 |
+
|
| 441 |
with gr.Row(visible=False) as webcam_capture_row:
|
| 442 |
webcam_capture_component = gr.Image(sources=["webcam"], type="numpy", show_label=False)
|
| 443 |
close_webcam_btn = gr.Button("β
Use this image")
|
| 444 |
+
|
| 445 |
with gr.Row(visible=False) as audio_record_row:
|
| 446 |
audio_input = gr.Audio(sources=["microphone"], type="filepath", show_label=False)
|
| 447 |
+
|
| 448 |
with gr.Column(visible=False, elem_id="menu_options_row") as menu_options_row:
|
| 449 |
+
file_input = gr.File(type="filepath", label="File Uploader", interactive=False)
|
| 450 |
btn_take_photo = gr.Button("πΈ Google Lens (Take Photo)")
|
| 451 |
btn_add_files = gr.Button("π Upload File")
|
| 452 |
|
|
|
|
| 455 |
txt = gr.Textbox(placeholder="Ask anything", show_label=False, lines=1, autofocus=True)
|
| 456 |
mic_btn = gr.Button("ποΈ", interactive=True, size="sm")
|
| 457 |
combined_btn = gr.Button("βοΈ", variant="primary", size="sm")
|
| 458 |
+
|
| 459 |
+
audio_output = gr.Audio(visible=False)
|
| 460 |
|
|
|
|
|
|
|
|
|
|
| 461 |
output_components = [chatbot, stop_signal, hint_box, txt, combined_btn, audio_output, is_voice_chat, fact_check_btn_row, staged_image, file_input, file_download_output]
|
| 462 |
|
| 463 |
# --- WIRE EVENTS ---
|
| 464 |
|
| 465 |
+
btn_menu.click(
|
| 466 |
+
fn=toggle_menu, inputs=[menu_visible_state], outputs=[menu_visible_state, menu_options_row, fact_check_btn_row, btn_menu], queue=False
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
def prepare_file_upload(): return gr.update(visible=False), gr.update(value="β"), gr.update(visible=False), gr.update(interactive=True), gr.update(value="")
|
| 470 |
btn_add_files.click(fn=prepare_file_upload, inputs=[], outputs=[menu_options_row, btn_menu, fact_check_btn_row, file_input, txt], queue=False)
|
| 471 |
+
|
| 472 |
+
file_input.change(
|
| 473 |
+
fn=stage_file_upload, inputs=[file_input], outputs=[staged_image, hint_box, txt, file_input], queue=False
|
| 474 |
+
)
|
| 475 |
|
| 476 |
+
btn_take_photo.click(
|
| 477 |
+
fn=lambda: (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), "πΈ Camera Active. Capture an image.", gr.update(value="β")),
|
| 478 |
+
inputs=[], outputs=[menu_options_row, webcam_capture_row, input_row, hint_box, btn_menu], queue=False
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
close_webcam_btn.click(
|
| 482 |
fn=lambda img: (gr.update(visible=True), gr.update(visible=False), img, f"πΈ Photo staged: Click send (βοΈ).", gr.update(value="")),
|
| 483 |
+
inputs=[webcam_capture_component], outputs=[input_row, webcam_capture_row, staged_image, hint_box, txt], queue=False
|
|
|
|
|
|
|
| 484 |
)
|
| 485 |
+
|
| 486 |
+
mic_btn.click(
|
| 487 |
+
fn=lambda: (gr.update(visible=False), gr.update(visible=True), "ποΈ Recording..."),
|
| 488 |
+
inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
).then(
|
| 490 |
+
fn=simulate_recording_delay, inputs=[], outputs=[], queue=False
|
| 491 |
+
).then(
|
| 492 |
+
fn=lambda: (gr.update(visible=True), gr.update(visible=False), "ποΈ Processing recording..."),
|
| 493 |
+
inputs=[], outputs=[input_row, audio_record_row, hint_box], queue=False
|
| 494 |
+
).then(
|
| 495 |
+
fn=transcribe_audio, inputs=audio_input, outputs=[txt, hint_box, txt, combined_btn, is_voice_chat, fact_check_btn_row], queue=False
|
| 496 |
+
).then(
|
| 497 |
+
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
| 498 |
+
).then(
|
| 499 |
+
fn=chat_generator, inputs=[txt, staged_image, chatbot, stop_signal, is_voice_chat], outputs=output_components, queue=True
|
| 500 |
+
).then(
|
| 501 |
+
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 502 |
)
|
| 503 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
generator_inputs = [txt, staged_image, chatbot, stop_signal, is_voice_chat]
|
| 505 |
+
|
| 506 |
+
# Text submit (Enter key)
|
| 507 |
txt.submit(
|
| 508 |
+
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
|
|
|
|
|
|
|
|
|
| 509 |
).then(
|
| 510 |
+
fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
|
|
|
|
|
|
|
|
|
|
| 511 |
).then(
|
| 512 |
+
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 513 |
)
|
| 514 |
+
|
| 515 |
+
# Send button click
|
| 516 |
combined_btn.click(
|
| 517 |
+
fn=user_turn, inputs=[txt, chatbot, staged_image], outputs=[txt, chatbot], queue=False
|
|
|
|
|
|
|
|
|
|
| 518 |
).then(
|
| 519 |
+
fn=chat_generator, inputs=generator_inputs, outputs=output_components, queue=True
|
|
|
|
|
|
|
|
|
|
| 520 |
).then(
|
| 521 |
+
fn=clear_staged_media, inputs=[], outputs=[staged_image], queue=False
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
btn_fact_check.click(
|
| 525 |
+
fn=manual_fact_check, inputs=[chatbot], outputs=[chatbot, hint_box, fact_check_btn_row], queue=True
|
| 526 |
)
|
| 527 |
|
| 528 |
+
demo.queue(max_size=20).launch(server_name="0.0.0.0")
|
|
|
|
|
|
|
|
|