File size: 3,798 Bytes
59812f5
141ba59
c86c2f3
 
 
d2d3f64
c86c2f3
141ba59
c86c2f3
4522cd0
 
59812f5
4522cd0
141ba59
048acee
4522cd0
048acee
e6dd388
 
c86c2f3
09b3f75
c86c2f3
141ba59
 
 
 
 
c86c2f3
d2d3f64
4522cd0
c86c2f3
141ba59
c86c2f3
141ba59
 
 
 
 
 
 
 
 
 
 
 
 
54995d2
 
 
6bc8e25
54995d2
141ba59
 
 
54995d2
141ba59
 
 
 
 
 
 
 
 
 
 
c86c2f3
141ba59
 
 
 
c86c2f3
141ba59
 
 
b4ca5ac
141ba59
09b3f75
c86c2f3
 
 
 
141ba59
 
09b3f75
c86c2f3
4522cd0
c86c2f3
141ba59
 
 
09b3f75
c86c2f3
 
 
141ba59
 
 
09b3f75
c86c2f3
4522cd0
c86c2f3
 
141ba59
 
 
 
 
 
 
 
 
 
 
3541e3a
 
 
 
141ba59
 
1827259
141ba59
 
 
e6dd388
89f9579
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Chat con CollegeOne-IA

Bienvenido al modelo de IA generativa de CollegeOne para interacciones de chat
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Me puedes explicar como crear una clase de matematicas para 1er grado?"],
        ["Me puedes ayudar a traducir contenido?"],
        ["Ayudame a resumir un texto"],
        ["Como puedo optmizar mi tiempo"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()