Fix bug that _temp_run can't be pickled; Pass indices to allow evaluation on a subset of problems

#3
by shunzh - opened
Files changed (2) hide show
  1. apps_metric.py +2 -2
  2. utils.py +17 -10
apps_metric.py CHANGED
@@ -76,7 +76,7 @@ class apps_metric(evaluate.EvaluationModule):
76
 
77
 
78
 
79
- def _compute(self, predictions, k_list=[1, 10, 100], count_errors=True, level="all", debug=False):
80
  """Returns the scores"""
81
- metrics = compute_metrics(predictions, k_list=k_list, count_errors=count_errors, level=level, debug=debug)
82
  return metrics
 
76
 
77
 
78
 
79
+ def _compute(self, predictions, indices=None, k_list=[1, 10, 100], count_errors=True, level="all", debug=False):
80
  """Returns the scores"""
81
+ metrics = compute_metrics(predictions, indices=indices, k_list=k_list, count_errors=count_errors, level=level, debug=debug)
82
  return metrics
utils.py CHANGED
@@ -9,13 +9,14 @@ from .testing_util import run_test
9
  DATASET = "codeparrot/apps"
10
  TIMEOUT = 10
11
 
 
 
 
 
12
  def check_correctness(sample, generation, timeout, debug=True):
13
  """Check correctness of code generation with a global timeout.
14
  The global timeout is to catch some extreme/rare cases not handled by the timeouts
15
  inside `run_test`"""
16
- def _temp_run(sample, generation, debug, result):
17
- result.append(run_test(sample, test=generation, debug=debug))
18
-
19
  manager = multiprocessing.Manager()
20
  result = manager.list()
21
  p = multiprocessing.Process(target=_temp_run, args=(sample, generation, debug, result))
@@ -32,12 +33,13 @@ def check_correctness(sample, generation, timeout, debug=True):
32
  return result[0]
33
 
34
 
35
- def evaluate_generations(generations: list, level: str = "all", debug: bool = False):
36
  """We take the list of code generations and try to compile them
37
  and the run their corresponding unit tests which are retrieved from the APPS dataset.
38
 
39
  Args:
40
  generations: list of code generations (same order as samples in APPS dataset)
 
41
  level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
42
 
43
  Returns:
@@ -47,10 +49,14 @@ def evaluate_generations(generations: list, level: str = "all", debug: bool = Fa
47
 
48
  # generations are code generations in the same order of the dataset
49
  apps_eval = load_dataset(DATASET, split="test", difficulties=[level])
 
 
 
 
50
  results = {}
51
- for index in range(len(generations)):
52
  # code generations for problem (index)
53
- problem_generations = generations[index]
54
  # get corresponding samples from APPS dataset
55
  sample = apps_eval[index]
56
  res = []
@@ -74,7 +80,7 @@ def evaluate_generations(generations: list, level: str = "all", debug: bool = Fa
74
  print(f"Results were not True for all test cases")
75
  except Exception as e:
76
  if debug:
77
- print(f"Compilation failed, test framework exception = {repr(e)}{e}\n")
78
  break
79
  finally:
80
  assert isinstance(curr_res, list)
@@ -125,7 +131,7 @@ def get_results(results: Dict[int, list], count_errors: bool = False, k_list: li
125
 
126
  metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
127
 
128
- if len(results[0]) == 1:
129
  # for single generations we compute average accuracy and stric accuracy: original APPS metrics
130
  print("Computing accuracy metrics...")
131
  res = []
@@ -173,10 +179,11 @@ def get_results(results: Dict[int, list], count_errors: bool = False, k_list: li
173
  metrics["pass_at_k"] = pass_at_k
174
  return metrics
175
 
176
- def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
177
  """Return metrics for the given generations.
178
  Args:
179
  generations: list of code generations for each problem (each generation is a list of generations)
 
180
  k_list: list of k values to compute pass@k when using multiple generations
181
  count_errors: whether to count compilation and runtime errors when using single generations
182
  level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
@@ -204,7 +211,7 @@ def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=
204
  {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
205
  {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
206
  """
207
- results = evaluate_generations(generations, level=level, debug=debug)
208
  metrics = get_results(results, count_errors=count_errors, k_list=k_list)
209
  return metrics
210
 
 
9
  DATASET = "codeparrot/apps"
10
  TIMEOUT = 10
11
 
12
+
13
+ def _temp_run(sample, generation, debug, result):
14
+ result.append(run_test(sample, test=generation, debug=debug))
15
+
16
  def check_correctness(sample, generation, timeout, debug=True):
17
  """Check correctness of code generation with a global timeout.
18
  The global timeout is to catch some extreme/rare cases not handled by the timeouts
19
  inside `run_test`"""
 
 
 
20
  manager = multiprocessing.Manager()
21
  result = manager.list()
22
  p = multiprocessing.Process(target=_temp_run, args=(sample, generation, debug, result))
 
33
  return result[0]
34
 
35
 
36
+ def evaluate_generations(generations: list, indices: list = [], level: str = "all", debug: bool = False):
37
  """We take the list of code generations and try to compile them
38
  and the run their corresponding unit tests which are retrieved from the APPS dataset.
39
 
40
  Args:
41
  generations: list of code generations (same order as samples in APPS dataset)
42
+ indices: list of indicies of problems to evaluate, if empty, evaluate all problems
43
  level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
44
 
45
  Returns:
 
49
 
50
  # generations are code generations in the same order of the dataset
51
  apps_eval = load_dataset(DATASET, split="test", difficulties=[level])
52
+
53
+ if indices is None:
54
+ indices = range(len(generations))
55
+
56
  results = {}
57
+ for index, generation in zip(indices, generations):
58
  # code generations for problem (index)
59
+ problem_generations = generation
60
  # get corresponding samples from APPS dataset
61
  sample = apps_eval[index]
62
  res = []
 
80
  print(f"Results were not True for all test cases")
81
  except Exception as e:
82
  if debug:
83
+ print(f"Compilation failed, test framework exception = {repr(e)}\n")
84
  break
85
  finally:
86
  assert isinstance(curr_res, list)
 
131
 
132
  metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
133
 
134
+ if len(list(results.values())[0]) == 1:
135
  # for single generations we compute average accuracy and stric accuracy: original APPS metrics
136
  print("Computing accuracy metrics...")
137
  res = []
 
179
  metrics["pass_at_k"] = pass_at_k
180
  return metrics
181
 
182
+ def compute_metrics(generations, indices=None, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
183
  """Return metrics for the given generations.
184
  Args:
185
  generations: list of code generations for each problem (each generation is a list of generations)
186
+ indices: list of indices of problems (if None, generations are all problems)
187
  k_list: list of k values to compute pass@k when using multiple generations
188
  count_errors: whether to count compilation and runtime errors when using single generations
189
  level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
 
211
  {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
212
  {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
213
  """
214
+ results = evaluate_generations(generations, indices=indices, level=level, debug=debug)
215
  metrics = get_results(results, count_errors=count_errors, k_list=k_list)
216
  return metrics
217