File size: 7,701 Bytes
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
dede9e1
7573abd
6e419a7
 
f510aac
7573abd
dede9e1
7573abd
e3716e2
6e419a7
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed57e85
7573abd
 
c0eaee8
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7cdcf4
7573abd
c0eaee8
 
 
7573abd
 
 
 
 
 
 
 
c29119d
7573abd
 
05cc159
 
4206e00
36c12a2
 
7573abd
 
 
 
 
 
 
 
 
 
 
d6ea758
f664b2f
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c936a24
7573abd
 
c251693
cc1d387
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57659db
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57659db
7573abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0eaee8
7573abd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import json
import os
import shutil
import requests

import gradio as gr
from huggingface_hub import Repository
from text_generation import Client

from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css

HF_TOKEN = os.environ.get("HF_TOKEN", None)

API_URL = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"

FIM_PREFIX = "<PRE> "
FIM_MIDDLE = " <MID>"
FIM_SUFFIX = " <SUF>"

FIM_INDICATOR = "<FILL_ME>"

EOS_STRING = "</s>"
EOT_STRING = "<EOT>"

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[
        gr.themes.GoogleFont("Open Sans"),
        "ui-sans-serif",
        "system-ui",
        "sans-serif",
    ],
)

client = Client(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)


def generate(
    prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    fim_mode = False

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    if FIM_INDICATOR in prompt:
        fim_mode = True
        try:
            prefix, suffix = prompt.split(FIM_INDICATOR)
        except:
            raise ValueError(f"Only one {FIM_INDICATOR} allowed in prompt!")
        prompt = f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}"

    
    stream = client.generate_stream(prompt, **generate_kwargs)
    

    if fim_mode:
        output = prefix
    else:
        output = prompt

    previous_token = ""
    for response in stream:
        if any([end_token in response.token.text for end_token in [EOS_STRING, EOT_STRING]]):
            if fim_mode:
                output += suffix
                yield output
                return output
                print("output", output)
            else:
                return output
        else:
            output += response.token.text
        previous_token = response.token.text
        yield output
    return output


examples = [
    "X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
    "// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
    "Poor English: She no went to the market. Corrected English:",
    "def alternating(list1, list2):\n   results = []\n   for i in range(min(len(list1), len(list2))):\n       results.append(list1[i])\n       results.append(list2[i])\n   if len(list1) > len(list2):\n       <FILL_ME>\n   else:\n       results.extend(list2[i+1:])\n   return results",
    "def remove_non_ascii(s: str) -> str:\n    \"\"\" <FILL_ME>\nprint(remove_non_ascii('afkdj$$('))",
]


def process_example(args):
    for x in generate(args):
        pass
    return x


css = ".generating {visibility: hidden}"

monospace_css = """
#q-input textarea {
    font-family: monospace, 'Consolas', Courier, monospace;
}
"""


css += share_btn_css + monospace_css + ".gradio-container {color: black}"

description = """
<div style="text-align: center;">
    <h1> 🦙 Code Llama Playground</h1>
</div>
<div style="text-align: left;">
    <p>This is a demo to generate text and code with the following <a href="https://huggingface.co/codellama/CodeLlama-13b-hf">Code Llama model (13B)</a>. Please note that this model is not designed for instruction purposes but for code completion. If you're looking for instruction or want to chat with a fine-tuned model, you can use <a href="https://huggingface.co/spaces/codellama/codellama-13b-chat">this demo instead</a>. You can learn more about the model in the <a href="https://huggingface.co/blog/codellama/">blog post</a> or <a href="https://huggingface.co/papers/2308.12950">paper</a></p>
    <p>For a chat demo of the largest Code Llama model (34B parameters), you can now <a href="https://huggingface.co/chat/">select Code Llama in Hugging Chat!</a></p>
</div>
"""

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    placeholder="Enter your code here",
                    lines=5,
                    label="Input",
                    elem_id="q-input",
                )
                submit = gr.Button("Generate", variant="primary")
                output = gr.Code(elem_id="q-output", lines=30, label="Output")
                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("Advanced settings", open=False):
                            with gr.Row():
                                column_1, column_2 = gr.Column(), gr.Column()
                                with column_1:
                                    temperature = gr.Slider(
                                        label="Temperature",
                                        value=0.1,
                                        minimum=0.0,
                                        maximum=1.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values produce more diverse outputs",
                                    )
                                    max_new_tokens = gr.Slider(
                                        label="Max new tokens",
                                        value=256,
                                        minimum=0,
                                        maximum=8192,
                                        step=64,
                                        interactive=True,
                                        info="The maximum numbers of new tokens",
                                    )
                                with column_2:
                                    top_p = gr.Slider(
                                        label="Top-p (nucleus sampling)",
                                        value=0.90,
                                        minimum=0.0,
                                        maximum=1,
                                        step=0.05,
                                        interactive=True,
                                        info="Higher values sample more low-probability tokens",
                                    )
                                    repetition_penalty = gr.Slider(
                                        label="Repetition penalty",
                                        value=1.05,
                                        minimum=1.0,
                                        maximum=2.0,
                                        step=0.05,
                                        interactive=True,
                                        info="Penalize repeated tokens",
                                    )
                                    
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )

    submit.click(
        generate,
        inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty],
        outputs=[output],
    )
demo.queue(concurrency_count=16).launch(debug=True)