File size: 4,968 Bytes
dc5d4c5
 
45bea6f
 
 
dc5d4c5
f892d4a
 
45bea6f
d1eabfd
 
dc5d4c5
 
 
d1eabfd
dc5d4c5
d1eabfd
45bea6f
 
 
d1eabfd
dc5d4c5
 
 
d0b932a
45bea6f
 
dc5d4c5
d1eabfd
dc5d4c5
 
 
d0b932a
45bea6f
 
78249bc
 
d0b932a
d1eabfd
d0b932a
 
 
 
45bea6f
d1eabfd
 
45bea6f
dc5d4c5
b7c8c25
45bea6f
 
 
dc5d4c5
45bea6f
dc5d4c5
45bea6f
dc5d4c5
 
 
 
 
 
45bea6f
 
dc5d4c5
45bea6f
d0b932a
 
78249bc
322c952
588d131
322c952
 
 
 
45bea6f
 
dc5d4c5
45bea6f
 
d1eabfd
45bea6f
 
 
 
 
 
 
 
 
dc5d4c5
45bea6f
dc5d4c5
 
286003b
52c9f9c
 
dc5d4c5
45bea6f
dc5d4c5
 
95a0bf9
b29eaf1
95a0bf9
dc5d4c5
45bea6f
dc5d4c5
45bea6f
 
 
 
 
 
 
dc5d4c5
45bea6f
dc5d4c5
45bea6f
 
 
dc5d4c5
45bea6f
 
 
 
 
 
 
dc5d4c5
45bea6f
dc5d4c5
 
 
 
b29eaf1
45bea6f
dc5d4c5
95a0bf9
dc5d4c5
 
 
 
45bea6f
dc5d4c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import random

import gradio as gr
import numpy as np
import torch
from diffusers import LCMScheduler, PixArtAlphaPipeline, Transformer2DModel
from peft import PeftModel

device = "cuda" if torch.cuda.is_available() else "cpu"

transformer = Transformer2DModel.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    subfolder="transformer",
    torch_dtype=torch.float16,
)
transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-pixart")


if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-XL-2-1024-MS",
        transformer=transformer,
        torch_dtype=torch.float16,
    )
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else:
    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-XL-2-1024-MS",
        transformer=transformer,
        torch_dtype=torch.float16,
    )
    pipe = pipe.to(device)

pipe.text_encoder.to_bettertransformer()

pipe.scheduler = LCMScheduler.from_pretrained(
    "PixArt-alpha/PixArt-XL-2-1024-MS",
    subfolder="scheduler",
    timestep_spacing="trailing",
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4


def infer(prompt, seed, randomize_seed):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        guidance_scale=0,
        num_inference_steps=NUM_INFERENCE_STEPS,
        generator=generator,
    ).images[0]

    return image


examples = [
    "The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
    "A raccoon reading a book in a lush forest.",
    "A small cactus with a happy face in the Sahara desert.",
    "A super-realistic close-up of a snake eye",
    "A cute cheetah looking amazed and surprised",
    "Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights",
    "a cute fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic",
    "A close up of an old elderly man with green eyes looking straight at the camera",
    "A beautiful sunflower in rainy day",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            f"""
        # ⚡ Flash Diffusion: FlashPixart ⚡
        This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/), a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
        Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin.*
        [This model](https://huggingface.co/jasperai/flash-pixart) is a **66.5M** LoRA distilled version of [Pixart-α](https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS) model that is able to generate 1024x1024 images in **4 steps**. 
        Currently running on {power_device}.
        """
        )
        gr.Markdown(
            "💡 *Hint:* To better appreciate the low latency of our method, run the demo locally !"
        )

        with gr.Row():

            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        examples = gr.Examples(examples=examples, inputs=[prompt])

        gr.Markdown(
            "**Disclaimer:**"
        )
        gr.Markdown(
            "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
        )

    run_button.click(fn=infer, inputs=[prompt, seed, randomize_seed], outputs=[result])
    seed.change(fn=infer, inputs=[prompt, seed, randomize_seed], outputs=[result])

demo.queue().launch(show_api=False)