Spaces:
Runtime error
Runtime error
File size: 15,837 Bytes
8a09a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from timm.models.vision_transformer import Mlp
from .attn_layers import Attention, FlashCrossMHAModified, FlashSelfMHAModified, CrossAttention
from .embedders import TimestepEmbedder, PatchEmbed, timestep_embedding
from .norm_layers import RMSNorm
from .poolers import AttentionPool
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class FP32_Layernorm(nn.LayerNorm):
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
origin_dtype = inputs.dtype
return F.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(),
self.eps).to(origin_dtype)
class FP32_SiLU(nn.SiLU):
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.silu(inputs.float(), inplace=False).to(inputs.dtype)
class HunYuanDiTBlock(nn.Module):
"""
A HunYuanDiT block with `add` conditioning.
"""
def __init__(self,
hidden_size,
c_emb_size,
num_heads,
mlp_ratio=4.0,
text_states_dim=1024,
use_flash_attn=False,
qk_norm=False,
norm_type="layer",
skip=False,
):
super().__init__()
self.use_flash_attn = use_flash_attn
use_ele_affine = True
if norm_type == "layer":
norm_layer = FP32_Layernorm
elif norm_type == "rms":
norm_layer = RMSNorm
else:
raise ValueError(f"Unknown norm_type: {norm_type}")
# ========================= Self-Attention =========================
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6)
if use_flash_attn:
self.attn1 = FlashSelfMHAModified(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm)
else:
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm)
# ========================= FFN =========================
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
# ========================= Add =========================
# Simply use add like SDXL.
self.default_modulation = nn.Sequential(
FP32_SiLU(),
nn.Linear(c_emb_size, hidden_size, bias=True)
)
# ========================= Cross-Attention =========================
if use_flash_attn:
self.attn2 = FlashCrossMHAModified(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
qk_norm=qk_norm)
else:
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
qk_norm=qk_norm)
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6)
# ========================= Skip Connection =========================
if skip:
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6)
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size)
else:
self.skip_linear = None
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
# Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
# Self-Attention
shift_msa = self.default_modulation(c).unsqueeze(dim=1)
attn_inputs = (
self.norm1(x) + shift_msa, freq_cis_img,
)
x = x + self.attn1(*attn_inputs)[0]
# Cross-Attention
cross_inputs = (
self.norm3(x), text_states, freq_cis_img
)
x = x + self.attn2(*cross_inputs)[0]
# FFN Layer
mlp_inputs = self.norm2(x)
x = x + self.mlp(mlp_inputs)
return x
class FinalLayer(nn.Module):
"""
The final layer of HunYuanDiT.
"""
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
FP32_SiLU(),
nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class HunYuanDiT(ModelMixin, ConfigMixin):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
input_size: tuple
The size of the input image.
patch_size: int
The size of the patch.
in_channels: int
The number of input channels.
hidden_size: int
The hidden size of the transformer backbone.
depth: int
The number of transformer blocks.
num_heads: int
The number of attention heads.
mlp_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
log_fn: callable
The logging function.
"""
@register_to_config
def __init__(
self, args,
input_size=(32, 32),
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
log_fn=print,
):
super().__init__()
self.args = args
self.log_fn = log_fn
self.depth = depth
self.learn_sigma = args.learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if args.learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size = hidden_size
self.text_states_dim = args.text_states_dim
self.text_states_dim_t5 = args.text_states_dim_t5
self.text_len = args.text_len
self.text_len_t5 = args.text_len_t5
self.norm = args.norm
use_flash_attn = args.infer_mode == 'fa'
if use_flash_attn:
log_fn(f" Enable Flash Attention.")
qk_norm = True # See http://arxiv.org/abs/2302.05442 for details.
self.mlp_t5 = nn.Sequential(
nn.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True),
FP32_SiLU(),
nn.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True),
)
# learnable replace
self.text_embedding_padding = nn.Parameter(
torch.randn(self.text_len + self.text_len_t5, self.text_states_dim, dtype=torch.float32))
# Attention pooling
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=1024)
# Here we use a default learned embedder layer for future extension.
self.style_embedder = nn.Embedding(1, hidden_size)
# Image size and crop size conditions
self.extra_in_dim = 256 * 6 + hidden_size
# Text embedding for `add`
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.extra_in_dim += 1024
self.extra_embedder = nn.Sequential(
nn.Linear(self.extra_in_dim, hidden_size * 4),
FP32_SiLU(),
nn.Linear(hidden_size * 4, hidden_size, bias=True),
)
# Image embedding
num_patches = self.x_embedder.num_patches
log_fn(f" Number of tokens: {num_patches}")
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList([
HunYuanDiTBlock(hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
text_states_dim=self.text_states_dim,
use_flash_attn=use_flash_attn,
qk_norm=qk_norm,
norm_type=self.norm,
skip=layer > depth // 2,
)
for layer in range(depth)
])
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels)
self.unpatchify_channels = self.out_channels
self.initialize_weights()
def forward(self,
x,
t,
encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
cos_cis_img=None,
sin_cis_img=None,
return_dict=True,
):
"""
Forward pass of the encoder.
Parameters
----------
x: torch.Tensor
(B, D, H, W)
t: torch.Tensor
(B)
encoder_hidden_states: torch.Tensor
CLIP text embedding, (B, L_clip, D)
text_embedding_mask: torch.Tensor
CLIP text embedding mask, (B, L_clip)
encoder_hidden_states_t5: torch.Tensor
T5 text embedding, (B, L_t5, D)
text_embedding_mask_t5: torch.Tensor
T5 text embedding mask, (B, L_t5)
image_meta_size: torch.Tensor
(B, 6)
style: torch.Tensor
(B)
cos_cis_img: torch.Tensor
sin_cis_img: torch.Tensor
return_dict: bool
Whether to return a dictionary.
"""
text_states = encoder_hidden_states # 2,77,1024
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
text_states_mask = text_embedding_mask.bool() # 2,77
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
b_t5, l_t5, c_t5 = text_states_t5.shape
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5))
text_states = torch.cat([text_states, text_states_t5.view(b_t5, l_t5, -1)], dim=1) # 2,205,1024
clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)
clip_t5_mask = clip_t5_mask
text_states = torch.where(clip_t5_mask.unsqueeze(2), text_states, self.text_embedding_padding.to(text_states))
_, _, oh, ow = x.shape
th, tw = oh // self.patch_size, ow // self.patch_size
# ========================= Build time and image embedding =========================
t = self.t_embedder(t)
x = self.x_embedder(x)
# Get image RoPE embedding according to `reso`lution.
freqs_cis_img = (cos_cis_img, sin_cis_img)
# ========================= Concatenate all extra vectors =========================
# Build text tokens with pooling
extra_vec = self.pooler(encoder_hidden_states_t5)
# Build image meta size tokens
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
if self.args.use_fp16:
image_meta_size = image_meta_size.half()
image_meta_size = image_meta_size.view(-1, 6 * 256)
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
# Build style tokens
style_embedding = self.style_embedder(style)
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
# Concatenate all extra vectors
c = t + self.extra_embedder(extra_vec) # [B, D]
# ========================= Forward pass through HunYuanDiT blocks =========================
skips = []
for layer, block in enumerate(self.blocks):
if layer > self.depth // 2:
skip = skips.pop()
x = block(x, c, text_states, freqs_cis_img, skip) # (N, L, D)
else:
x = block(x, c, text_states, freqs_cis_img) # (N, L, D)
if layer < (self.depth // 2 - 1):
skips.append(x)
# ========================= Final layer =========================
x = self.final_layer(x, c) # (N, L, patch_size ** 2 * out_channels)
x = self.unpatchify(x, th, tw) # (N, out_channels, H, W)
if return_dict:
return {'x': x}
return x
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize label embedding table:
nn.init.normal_(self.extra_embedder[0].weight, std=0.02)
nn.init.normal_(self.extra_embedder[2].weight, std=0.02)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in HunYuanDiT blocks:
for block in self.blocks:
nn.init.constant_(block.default_modulation[-1].weight, 0)
nn.init.constant_(block.default_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
p = self.x_embedder.patch_size[0]
# h = w = int(x.shape[1] ** 0.5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
return imgs
#################################################################################
# HunYuanDiT Configs #
#################################################################################
HUNYUAN_DIT_CONFIG = {
'DiT-g/2': {'depth': 40, 'hidden_size': 1408, 'patch_size': 2, 'num_heads': 16, 'mlp_ratio': 4.3637},
'DiT-XL/2': {'depth': 28, 'hidden_size': 1152, 'patch_size': 2, 'num_heads': 16},
'DiT-L/2': {'depth': 24, 'hidden_size': 1024, 'patch_size': 2, 'num_heads': 16},
'DiT-B/2': {'depth': 12, 'hidden_size': 768, 'patch_size': 2, 'num_heads': 12},
}
|