File size: 6,891 Bytes
da87908
6d7e55e
 
bba0eaf
5ab5f03
1bb48b0
6d7e55e
1bb48b0
6d7e55e
 
 
 
 
 
b609495
 
1bb48b0
b609495
 
 
 
 
 
1bb48b0
b609495
1bb48b0
156971a
1bb48b0
 
 
 
 
 
 
b609495
 
6d7e55e
56d9b8d
b609495
 
 
eabc75d
 
6d7e55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b3906
bba0eaf
60cc681
1bb48b0
56d9b8d
1bb48b0
5ab5f03
1bb48b0
5ab5f03
6d7e55e
 
bba0eaf
6d7e55e
56d9b8d
 
bba0eaf
5ab5f03
56d9b8d
 
bba0eaf
6d7e55e
 
 
da87908
 
042b462
da87908
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7e55e
 
 
9d54a05
f88f48c
9d54a05
 
da87908
 
 
6d7e55e
 
da87908
 
 
 
 
 
 
 
 
 
 
 
 
6d7e55e
 
 
 
 
 
 
 
 
 
 
 
 
da87908
 
 
 
 
 
 
 
6d7e55e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import json
import os
import subprocess
import time
import uuid
import zipfile
from dataclasses import fields
from urllib.request import urlretrieve

import gradio as gr
import transformers
from legogpt.models import LegoGPT, LegoGPTConfig


def setup():
    # Set up Gurobi licence
    licence_filename = 'gurobi.lic'
    licence_lines = []
    for secret_name in ['WLSACCESSID', 'WLSSECRET', 'LICENSEID']:
        secret = os.environ.get(secret_name)
        if not secret:
            raise ValueError(f'Env variable {secret_name} not found. Please set it in the Hugging Face Space settings.')
        licence_lines.append(f'{secret_name}={secret}\n')
    with open(licence_filename, 'w') as f:
        f.writelines(licence_lines)
    os.environ['GRB_LICENSE_FILE'] = os.path.abspath(licence_filename)

    # Download LDraw part library and set LDraw library path
    ldraw_zip_url = 'https://library.ldraw.org/library/updates/complete.zip'
    ldraw_zip_filename = 'complete.zip'
    urlretrieve(ldraw_zip_url, ldraw_zip_filename)
    with zipfile.ZipFile(ldraw_zip_filename) as zip_ref:
        zip_ref.extractall()
    os.environ['LDRAW_LIBRARY_PATH'] = os.path.abspath('ldraw')


def main():
    if os.environ.get('IS_HF_SPACE') == '1':
        print('Running in Hugging Face Space, setting up environment...')
        setup()

    model_cfg = LegoGPTConfig(max_regenerations=10)
    model = LegoGPT(model_cfg)

    def generate_lego(
            prompt: str,
            temperature: float | None,
            seed: int | None,
            max_bricks: int | None,
            max_brick_rejections: int | None,
            max_regenerations: int | None,
    ):
        # Set model parameters
        if temperature is not None: model.temperature = temperature
        if max_bricks is not None: model.max_bricks = max_bricks
        if max_brick_rejections is not None: model.max_brick_rejections = max_brick_rejections
        if max_regenerations is not None: model.max_regenerations = max_regenerations
        if seed is not None: transformers.set_seed(seed)

        # Generate LEGO
        print(f'Generating LEGO for prompt: "{prompt}"')
        start_time = time.time()
        output = model(prompt)

        # Write output LDR to file
        output_dir = os.path.abspath('out')
        output_uuid = str(uuid.uuid4())
        os.makedirs(output_dir, exist_ok=True)
        ldr_filename = os.path.join(output_dir, f'{output_uuid}.ldr')
        with open(ldr_filename, 'w') as f:
            f.write(output['lego'].to_ldr())
        print(f'Finished generation in {time.time() - start_time:.1f}s!')

        # Render LEGO model to image
        print('Rendering image...')
        start_time = time.time()
        img_filename = os.path.join(output_dir, f'{output_uuid}.png')
        subprocess.run(['python', 'render_lego.py', '--in_file', ldr_filename, '--out_file', img_filename],
                       check=True)  # Run render as a subprocess to prevent issues with Blender
        print(f'Finished rendering in {time.time() - start_time:.1f}s!')

        return img_filename, output['lego']

    # Define inputs and outputs
    in_prompt = gr.Textbox(label='Prompt', placeholder='Enter a prompt to generate a LEGO model.')
    in_temperature = gr.Slider(0.01, 2.0, value=model_cfg.temperature, step=0.01,
                               label='Temperature', info=get_help_string('temperature'))
    in_seed = gr.Number(value=42, label='Seed', info='Random seed for generation.', precision=0, step=1)
    in_bricks = gr.Number(value=model_cfg.max_bricks, label='Max bricks', info=get_help_string('max_bricks'),
                          precision=0, minimum=1, step=1)
    in_rejections = gr.Number(value=model_cfg.max_brick_rejections, label='Max brick rejections',
                              info=get_help_string('max_brick_rejections'), precision=0, minimum=0, step=1)
    in_regenerations = gr.Number(value=model_cfg.max_regenerations, label='Max regenerations',
                                 info=get_help_string('max_regenerations'), precision=0, minimum=0, step=1)
    out_img = gr.Image(label='Output image', format='png')
    out_txt = gr.Textbox(label='Output LEGO bricks', lines=5, max_lines=5, show_copy_button=True,
                         info='The LEGO structure in text format. Each line of the form "hxw (x,y,z)" represents a '
                              '1-unit-tall rectangular brick with dimensions hxw placed at coordinates (x,y,z).')

    # Define Gradio interface
    demo = gr.Interface(
        fn=generate_lego,
        title='LegoGPT Demo',
        description='Official demo for [LegoGPT](https://avalovelace1.github.io/LegoGPT/), the first approach for generating physically stable LEGO brick models from text prompts.\n\n'
                    'The model is restricted to creating structures made of 1-unit-tall cuboid bricks on a 20x20x20 grid. It was trained on a dataset of 21 object categories: '
                    '*basket, bed, bench, birdhouse, bookshelf, bottle, bowl, bus, camera, car, chair, guitar, jar, mug, piano, pot, sofa, table, tower, train, vessel.* '
                    'Performance on prompts from outside these categories may be limited. This demo does not include texturing or coloring.',
        inputs=[in_prompt],
        additional_inputs=[in_temperature, in_seed, in_bricks, in_rejections, in_regenerations],
        outputs=[out_img, out_txt],
        flagging_mode='never',
    )
    with demo:
        with gr.Row():
            examples = get_examples()
            dummy_name = gr.Textbox(visible=False, label='Name')
            dummy_out_img = gr.Image(visible=False, label='Result')
            gr.Examples(
                examples=[[name, example['prompt'], example['temperature'], example['seed'], example['output_img']]
                          for name, example in examples.items()],
                inputs=[dummy_name, in_prompt, in_temperature, in_seed, dummy_out_img],
                outputs=[out_img, out_txt],
                fn=lambda *args: (args[-1], examples[args[0]]['output_txt']),
                run_on_click=True,
            )
    demo.launch(share=True)


def get_help_string(field_name: str) -> str:
    """
    :param field_name: Name of a field in LegoGPTConfig.
    :return: Help string for the field.
    """
    data_fields = fields(LegoGPTConfig)
    name_field = next(f for f in data_fields if f.name == field_name)
    return name_field.metadata['help']


def get_examples(example_dir: str = os.path.abspath('examples')) -> dict[str, dict[str, str]]:
    examples_file = os.path.join(example_dir, 'examples.json')
    with open(examples_file) as f:
        examples = json.load(f)

    for example in examples.values():
        example['output_img'] = os.path.join(example_dir, example['output_img'])
    return examples


if __name__ == '__main__':
    main()