File size: 9,864 Bytes
5c7029b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import numpy as np
import soundfile as sf
from dataclasses import dataclass


# read wav audio, make mono and 16khz if necessary
def wav16m(sound_path):
    aud, sr = sf.read(sound_path, dtype=np.float32)
    if len(aud.shape) == 2:
        aud = aud.mean(1)
    if sr != 16000:
        alen = int(aud.shape[0] / sr * 16000)
        aud = signal.resample(aud, alen)
    return aud


def aligner(model_path,model_word_separator = '|', model_blank_token = '[PAD]'):

    # build labels dict from a processor where it is not directly accessible
    def get_processor_labels(processor,word_sep,max_labels=100):
        ixs = sorted(list(range(max_labels)),reverse=True)
        return {processor.tokenizer.decode(n) or word_sep:n for n in ixs}

    #------------------------------------------
    # setup wav2vec2
    #------------------------------------------

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    torch.random.manual_seed(0)
    max_labels = 100 # any reasonable number higher than vocab + extra + special tokens in any language used


    model = Wav2Vec2ForCTC.from_pretrained(model_path).to(device)
    processor = Wav2Vec2Processor.from_pretrained(model_path)
    labels_dict = get_processor_labels(processor,model_word_separator)
    blank_id = labels_dict[model_blank_token]


    #convert frame-numbers to timestamps in seconds
    # w2v2 step size is about 20ms, or 50 frames per second
    def f2s(fr):
        return fr/50



    #------------------------------------------
    # forced alignment with ctc decoder
    #   based on implementation of
    #   https://pytorch.org/audio/main/tutorials/forced_alignment_tutorial.html
    #------------------------------------------


    # return the label class probability of each audio frame
    # wav is the wav data already read in, NOT the file path.
    def get_frame_probs(wav):
        with torch.inference_mode(): # similar to with torch.no_grad():
            input_values = processor(wav,sampling_rate=16000).input_values[0]
            input_values = torch.tensor(input_values, device=device).unsqueeze(0)
            emits = model(input_values).logits
            emits = torch.log_softmax(emits, dim=-1)
        return emits[0].cpu().detach()


    def get_trellis(emission, tokens, blank_id):
    
        num_frame = emission.size(0)
        num_tokens = len(tokens)
        trellis = torch.empty((num_frame + 1, num_tokens + 1))
        trellis[0, 0] = 0
        trellis[1:, 0] = torch.cumsum(emission[:, 0], 0) # len of this slice of trellis is len of audio frames)
        trellis[0, -num_tokens:] = -float("inf") # len of this slice of trellis is len of transcript tokens
        trellis[-num_tokens:, 0] = float("inf")
        for t in range(num_frame):
            trellis[t + 1, 1:] = torch.maximum(
                # Score for staying at the same token
                trellis[t, 1:] + emission[t, blank_id],
                # Score for changing to the next token
                trellis[t, :-1] + emission[t, tokens],
            )
        return trellis



    @dataclass
    class Point:
        token_index: int
        time_index: int
        score: float
    
    @dataclass
    class Segment:
        label: str
        start: int
        end: int
        score: float

        @property
        def mfaform(self):
            return f"{f2s(self.start)},{f2s(self.end)},{self.label}"

        @property
        def length(self):
            return self.end - self.start
    
    
    
    def backtrack(trellis, emission, tokens, blank_id):
    # Note:
    # j and t are indices for trellis, which has extra dimensions
    # for time and tokens at the beginning.
    # When referring to time frame index `T` in trellis,
    # the corresponding index in emission is `T-1`.
    # Similarly, when referring to token index `J` in trellis,
    # the corresponding index in transcript is `J-1`.
        j = trellis.size(1) - 1
        t_start = torch.argmax(trellis[:, j]).item()
    
        path = []
        for t in range(t_start, 0, -1):
        # 1. Figure out if the current position was stay or change
        # `emission[J-1]` is the emission at time frame `J` of trellis dimension.
        # Score for token staying the same from time frame J-1 to T.
            stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
        # Score for token changing from C-1 at T-1 to J at T.
            changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]

        # 2. Store the path with frame-wise probability.
            prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
        # Return token index and time index in non-trellis coordinate.
            path.append(Point(j - 1, t - 1, prob))
            
            # 3. Update the token
            if changed > stayed:
                j -= 1
                if j == 0:
                    break
        else:
            raise ValueError("Failed to align")
        return path[::-1]


    def merge_repeats(path,transcript):
        i1, i2 = 0, 0
        segments = []
        while i1 < len(path):
            while i2 < len(path) and path[i1].token_index == path[i2].token_index: # while both path steps point to the same token index
                i2 += 1
            score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
            segments.append( # when i2 finally switches to a different token,
                Segment(
                    transcript[path[i1].token_index],# to the list of segments, append the token from i1
                    path[i1].time_index, # time of the first path-point of that token
                    path[i2 - 1].time_index + 1, # time of the final path-point for that token.
                    score,
                )
            )
            i1 = i2
        return segments



    def merge_words(segments, separator):
        words = []
        i1, i2 = 0, 0
        while i1 < len(segments):
            if i2 >= len(segments) or segments[i2].label == separator:
                if i1 != i2:
                    segs = segments[i1:i2]
                    word = "".join([seg.label for seg in segs])
                    score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
                    words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
                i1 = i2 + 1
                i2 = i1
            else:
                i2 += 1
        return words




    #------------------------------------------
    # handle, i/o, etc.
    #------------------------------------------


    # generate mfa format for character (phone) and word alignments
    # skip the word separator as it is not a phone
    def mfalike(chars,wds,wsep):
        hed = ['Begin,End,Label,Type,Speaker\n']
        wlines = [f'{w.mfaform},words,000\n' for w in wds]
        slines = [f'{ch.mfaform},phones,000\n' for ch in chars if ch.label != wsep]
        return (''.join(hed+wlines+slines))

    # generate basic exportable list format for character OR word alignments
    # skip the word separator as it is not a phone
    def basic(segs,wsep="|"):
        return [[s.label,f2s(s.start),f2s(s.end)] for s in segs if s.label != wsep]
        
        
    # generate numbered dicts to use in dtw
    # alignment is given in numbered frames, not converted to timestamps
    def fordtw(words,segments):

        # index i, and word/seg, startframe, endframe
        # preppend the index i to the word or seg
        def _ix(i,elem):
            return [f'{i:03d}__{elem.label}', elem.start, elem.end]
    
        w_al = [_ix(i,wse) for i,wse in enumerate(words)] # from tuple to list

        wsegdict = {}
        for w,s,e in w_al:
            nlett = len(w.split('__')[1])
            wsegs = segments[:nlett]
            wstart = s
            wsegs = [_ix(i,cse) for i,cse in enumerate(wsegs)]
            wsegs = [[seg, ss-s, se-s] for seg,ss,se in wsegs]
            wsegdict[w] = wsegs
            segments = segments[nlett:]
        
        return w_al, wsegdict


    # basic cleaning
    # skip with is_normed=True 
    #  if transcript was already normalised externally
    def normalise_transcript(xcp):
        xcp = xcp.lower()
        xcp = xcp.replace('-','')
        while '  ' in xcp:
            xcp = xcp.replace('  ', ' ')
        return xcp


    # needs pad labels added to correctly time first segment
    # and therefore add word sep character as placeholder in transcript
    def prep_transcript(xcp,is_normed):
        if not is_normed:
            xcp = normalise_transcript(xcp)
        xcp = xcp.replace(' ',model_word_separator)
        label_ids = [labels_dict[c] for c in xcp]
        label_ids = [blank_id] + label_ids + [blank_id]
        xcp = f'{model_word_separator}{xcp}{model_word_separator}'
        return xcp,label_ids
    
    
    def _align(wav_data,transcript,is_normed=False):

        norm_transcript,rec_label_ids = prep_transcript(transcript,is_normed)
        emit = get_frame_probs(wav_data)
        trellis = get_trellis(emit, rec_label_ids, blank_id)
        path = backtrack(trellis, emit, rec_label_ids, blank_id)
        
        segments = merge_repeats(path,norm_transcript)
        words = merge_words(segments, model_word_separator)

        #return fordtw(words,model_word_separator), basic(segments,model_word_separator)
        return basic(words,model_word_separator)

    return _align


# usage:
# from ctcalign import aligner, wav16m
# model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
# model_word_sep = '|'
# model_blank_tk = '[PAD]'
# caligner = aligner(model_path,model_word_sep,model_blank_tk)
# word_aln, seg_aln = caligner(wav16m(wav_path),transcript_string)