File size: 9,864 Bytes
5c7029b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import numpy as np
import soundfile as sf
from dataclasses import dataclass
# read wav audio, make mono and 16khz if necessary
def wav16m(sound_path):
aud, sr = sf.read(sound_path, dtype=np.float32)
if len(aud.shape) == 2:
aud = aud.mean(1)
if sr != 16000:
alen = int(aud.shape[0] / sr * 16000)
aud = signal.resample(aud, alen)
return aud
def aligner(model_path,model_word_separator = '|', model_blank_token = '[PAD]'):
# build labels dict from a processor where it is not directly accessible
def get_processor_labels(processor,word_sep,max_labels=100):
ixs = sorted(list(range(max_labels)),reverse=True)
return {processor.tokenizer.decode(n) or word_sep:n for n in ixs}
#------------------------------------------
# setup wav2vec2
#------------------------------------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.random.manual_seed(0)
max_labels = 100 # any reasonable number higher than vocab + extra + special tokens in any language used
model = Wav2Vec2ForCTC.from_pretrained(model_path).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_path)
labels_dict = get_processor_labels(processor,model_word_separator)
blank_id = labels_dict[model_blank_token]
#convert frame-numbers to timestamps in seconds
# w2v2 step size is about 20ms, or 50 frames per second
def f2s(fr):
return fr/50
#------------------------------------------
# forced alignment with ctc decoder
# based on implementation of
# https://pytorch.org/audio/main/tutorials/forced_alignment_tutorial.html
#------------------------------------------
# return the label class probability of each audio frame
# wav is the wav data already read in, NOT the file path.
def get_frame_probs(wav):
with torch.inference_mode(): # similar to with torch.no_grad():
input_values = processor(wav,sampling_rate=16000).input_values[0]
input_values = torch.tensor(input_values, device=device).unsqueeze(0)
emits = model(input_values).logits
emits = torch.log_softmax(emits, dim=-1)
return emits[0].cpu().detach()
def get_trellis(emission, tokens, blank_id):
num_frame = emission.size(0)
num_tokens = len(tokens)
trellis = torch.empty((num_frame + 1, num_tokens + 1))
trellis[0, 0] = 0
trellis[1:, 0] = torch.cumsum(emission[:, 0], 0) # len of this slice of trellis is len of audio frames)
trellis[0, -num_tokens:] = -float("inf") # len of this slice of trellis is len of transcript tokens
trellis[-num_tokens:, 0] = float("inf")
for t in range(num_frame):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens],
)
return trellis
@dataclass
class Point:
token_index: int
time_index: int
score: float
@dataclass
class Segment:
label: str
start: int
end: int
score: float
@property
def mfaform(self):
return f"{f2s(self.start)},{f2s(self.end)},{self.label}"
@property
def length(self):
return self.end - self.start
def backtrack(trellis, emission, tokens, blank_id):
# Note:
# j and t are indices for trellis, which has extra dimensions
# for time and tokens at the beginning.
# When referring to time frame index `T` in trellis,
# the corresponding index in emission is `T-1`.
# Similarly, when referring to token index `J` in trellis,
# the corresponding index in transcript is `J-1`.
j = trellis.size(1) - 1
t_start = torch.argmax(trellis[:, j]).item()
path = []
for t in range(t_start, 0, -1):
# 1. Figure out if the current position was stay or change
# `emission[J-1]` is the emission at time frame `J` of trellis dimension.
# Score for token staying the same from time frame J-1 to T.
stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
# Score for token changing from C-1 at T-1 to J at T.
changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]
# 2. Store the path with frame-wise probability.
prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
# Return token index and time index in non-trellis coordinate.
path.append(Point(j - 1, t - 1, prob))
# 3. Update the token
if changed > stayed:
j -= 1
if j == 0:
break
else:
raise ValueError("Failed to align")
return path[::-1]
def merge_repeats(path,transcript):
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index: # while both path steps point to the same token index
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
segments.append( # when i2 finally switches to a different token,
Segment(
transcript[path[i1].token_index],# to the list of segments, append the token from i1
path[i1].time_index, # time of the first path-point of that token
path[i2 - 1].time_index + 1, # time of the final path-point for that token.
score,
)
)
i1 = i2
return segments
def merge_words(segments, separator):
words = []
i1, i2 = 0, 0
while i1 < len(segments):
if i2 >= len(segments) or segments[i2].label == separator:
if i1 != i2:
segs = segments[i1:i2]
word = "".join([seg.label for seg in segs])
score = sum(seg.score * seg.length for seg in segs) / sum(seg.length for seg in segs)
words.append(Segment(word, segments[i1].start, segments[i2 - 1].end, score))
i1 = i2 + 1
i2 = i1
else:
i2 += 1
return words
#------------------------------------------
# handle, i/o, etc.
#------------------------------------------
# generate mfa format for character (phone) and word alignments
# skip the word separator as it is not a phone
def mfalike(chars,wds,wsep):
hed = ['Begin,End,Label,Type,Speaker\n']
wlines = [f'{w.mfaform},words,000\n' for w in wds]
slines = [f'{ch.mfaform},phones,000\n' for ch in chars if ch.label != wsep]
return (''.join(hed+wlines+slines))
# generate basic exportable list format for character OR word alignments
# skip the word separator as it is not a phone
def basic(segs,wsep="|"):
return [[s.label,f2s(s.start),f2s(s.end)] for s in segs if s.label != wsep]
# generate numbered dicts to use in dtw
# alignment is given in numbered frames, not converted to timestamps
def fordtw(words,segments):
# index i, and word/seg, startframe, endframe
# preppend the index i to the word or seg
def _ix(i,elem):
return [f'{i:03d}__{elem.label}', elem.start, elem.end]
w_al = [_ix(i,wse) for i,wse in enumerate(words)] # from tuple to list
wsegdict = {}
for w,s,e in w_al:
nlett = len(w.split('__')[1])
wsegs = segments[:nlett]
wstart = s
wsegs = [_ix(i,cse) for i,cse in enumerate(wsegs)]
wsegs = [[seg, ss-s, se-s] for seg,ss,se in wsegs]
wsegdict[w] = wsegs
segments = segments[nlett:]
return w_al, wsegdict
# basic cleaning
# skip with is_normed=True
# if transcript was already normalised externally
def normalise_transcript(xcp):
xcp = xcp.lower()
xcp = xcp.replace('-','')
while ' ' in xcp:
xcp = xcp.replace(' ', ' ')
return xcp
# needs pad labels added to correctly time first segment
# and therefore add word sep character as placeholder in transcript
def prep_transcript(xcp,is_normed):
if not is_normed:
xcp = normalise_transcript(xcp)
xcp = xcp.replace(' ',model_word_separator)
label_ids = [labels_dict[c] for c in xcp]
label_ids = [blank_id] + label_ids + [blank_id]
xcp = f'{model_word_separator}{xcp}{model_word_separator}'
return xcp,label_ids
def _align(wav_data,transcript,is_normed=False):
norm_transcript,rec_label_ids = prep_transcript(transcript,is_normed)
emit = get_frame_probs(wav_data)
trellis = get_trellis(emit, rec_label_ids, blank_id)
path = backtrack(trellis, emit, rec_label_ids, blank_id)
segments = merge_repeats(path,norm_transcript)
words = merge_words(segments, model_word_separator)
#return fordtw(words,model_word_separator), basic(segments,model_word_separator)
return basic(words,model_word_separator)
return _align
# usage:
# from ctcalign import aligner, wav16m
# model_path ="/home/caitlinr/work/models/LVL/wav2vec2-large-xlsr-53-icelandic-ep10-1000h"
# model_word_sep = '|'
# model_blank_tk = '[PAD]'
# caligner = aligner(model_path,model_word_sep,model_blank_tk)
# word_aln, seg_aln = caligner(wav16m(wav_path),transcript_string)
|