File size: 4,251 Bytes
da172d6
 
 
 
 
35772cf
da172d6
 
 
a9e905c
bd6347d
 
da172d6
 
 
 
 
91e3b96
da172d6
62daef8
 
273c0b8
29302cd
367d052
62daef8
 
273c0b8
da172d6
62daef8
 
273c0b8
da172d6
62daef8
 
273c0b8
 
367d052
273c0b8
 
 
 
b29e94e
 
 
273c0b8
 
3ca8c75
 
91e3b96
3ca8c75
367d052
62daef8
 
273c0b8
3ca8c75
62daef8
 
273c0b8
3ca8c75
91e3b96
 
 
367d052
91e3b96
 
273c0b8
91e3b96
 
 
273c0b8
91e3b96
367d052
91e3b96
 
273c0b8
91e3b96
 
 
273c0b8
91e3b96
35772cf
ea3b7ec
 
 
 
 
 
 
 
 
 
 
 
 
af4ad42
 
 
 
3f830ea
273c0b8
 
 
 
 
04e5920
273c0b8
 
 
 
076bf9c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from home import read_markdown_file
import streamlit as st


def app():
    st.title("Gallery")
    st.write(
        """

        Even though we trained the Italian CLIP model on way less examples than the original
        OpenAI's CLIP, our training choices and quality datasets led to impressive results.
        Here, we present some of them.
        
        """
    )

    st.markdown("### 1. Actors in Scenes")
    st.markdown("These examples were taken from the CC dataset.")

    st.subheader("Una coppia")
    st.markdown("*A couple*")
    st.image("static/img/examples/couple_0.jpeg", use_column_width=True)

    col1, col2 = st.columns(2)
    col1.subheader("Una coppia con il tramonto sullo sfondo")
    col1.markdown("*A couple with the sunset in the background*")
    col1.image("static/img/examples/couple_1.jpeg", use_column_width=True)

    col2.subheader("Una coppia che passeggia sulla spiaggia")
    col2.markdown("*A couple walking on the beach*")
    col2.image("static/img/examples/couple_2.jpeg", use_column_width=True)

    st.subheader("Una coppia che passeggia sulla spiaggia al tramonto")
    st.markdown("*A couple walking on the beach at sunset*")
    st.image("static/img/examples/couple_3.jpeg", use_column_width=True)

    col1, col2 = st.columns(2)
    col1.subheader("Un bambino con un biberon")
    col1.markdown("*A baby with a bottle*")
    col1.image("static/img/examples/bambino_biberon.jpeg", use_column_width=True)

    col2.subheader("Un bambino con un gelato in spiaggia")
    col2.markdown("*A child with an ice cream on the beach*")
    col2.image(
        "static/img/examples/bambino_gelato_spiaggia.jpeg", use_column_width=True
    )

    st.markdown("### 2. Dresses")
    st.markdown("These examples were taken from the Unsplash dataset.")

    col1, col2 = st.columns(2)
    col1.subheader("Un vestito primaverile")
    col1.markdown("*A dress for the spring*")
    col1.image("static/img/examples/vestito1.png", use_column_width=True)

    col2.subheader("Un vestito autunnale")
    col2.markdown("*A dress for the autumn*")
    col2.image("static/img/examples/vestito_autunnale.png", use_column_width=True)

    st.markdown("### 3. Chairs with different styles")
    st.markdown("These examples were taken from the CC dataset.")

    col1, col2 = st.columns(2)
    col1.subheader("Una sedia semplice")
    col1.markdown("*A simple chair*")
    col1.image("static/img/examples/sedia_semplice.jpeg", use_column_width=True)

    col2.subheader("Una sedia regale")
    col2.markdown("*A royal chair*")
    col2.image("static/img/examples/sedia_regale.jpeg", use_column_width=True)

    col1, col2 = st.columns(2)
    col1.subheader("Una sedia moderna")
    col1.markdown("*A modern chair*")
    col1.image("static/img/examples/sedia_moderna.jpeg", use_column_width=True)

    col2.subheader("Una sedia rustica")
    col2.markdown("*A rustic chair*")
    col2.image("static/img/examples/sedia_rustica.jpeg", use_column_width=True)

    st.markdown("## Localization")

    st.subheader("Un gatto")
    st.markdown("*A cat*")
    st.image("static/img/examples/un_gatto.png", use_column_width=True)

    st.subheader("Un gatto")
    st.markdown("*A cat*")
    st.image("static/img/examples/due_gatti.png", use_column_width=True)

    st.subheader("Un bambino")
    st.markdown("*A child*")
    st.image("static/img/examples/child_on_slide.png", use_column_width=True)

    st.subheader("A complex example: Uno squalo / un cavallo")
    st.markdown("*A shark / a horse*")
    st.image("static/img/examples/cavallo_squalo.png", use_column_width=True)

    st.markdown("## Image Classification")
    st.markdown(
        "We report this cool example provided by the "
        "[DALLE-mini team](https://github.com/borisdayma/dalle-mini). "
        "Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?"
    )

    st.image("static/img/examples/dalle_mini.png", use_column_width=True)
    st.markdown(
        "It seems it's half an armchair and half an avocado! We thank the DALL-E mini team for the great idea :)"
    )

    st.subheader("A more classic example")
    st.markdown("Is this a pizza, a dish of pasta or a cat?")
    st.image("static/img/examples/pizza.png", use_column_width=True)