Spaces:
Running
Running
File size: 4,251 Bytes
da172d6 35772cf da172d6 a9e905c bd6347d da172d6 91e3b96 da172d6 62daef8 273c0b8 29302cd 367d052 62daef8 273c0b8 da172d6 62daef8 273c0b8 da172d6 62daef8 273c0b8 367d052 273c0b8 b29e94e 273c0b8 3ca8c75 91e3b96 3ca8c75 367d052 62daef8 273c0b8 3ca8c75 62daef8 273c0b8 3ca8c75 91e3b96 367d052 91e3b96 273c0b8 91e3b96 273c0b8 91e3b96 367d052 91e3b96 273c0b8 91e3b96 273c0b8 91e3b96 35772cf ea3b7ec af4ad42 3f830ea 273c0b8 04e5920 273c0b8 076bf9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
from home import read_markdown_file
import streamlit as st
def app():
st.title("Gallery")
st.write(
"""
Even though we trained the Italian CLIP model on way less examples than the original
OpenAI's CLIP, our training choices and quality datasets led to impressive results.
Here, we present some of them.
"""
)
st.markdown("### 1. Actors in Scenes")
st.markdown("These examples were taken from the CC dataset.")
st.subheader("Una coppia")
st.markdown("*A couple*")
st.image("static/img/examples/couple_0.jpeg", use_column_width=True)
col1, col2 = st.columns(2)
col1.subheader("Una coppia con il tramonto sullo sfondo")
col1.markdown("*A couple with the sunset in the background*")
col1.image("static/img/examples/couple_1.jpeg", use_column_width=True)
col2.subheader("Una coppia che passeggia sulla spiaggia")
col2.markdown("*A couple walking on the beach*")
col2.image("static/img/examples/couple_2.jpeg", use_column_width=True)
st.subheader("Una coppia che passeggia sulla spiaggia al tramonto")
st.markdown("*A couple walking on the beach at sunset*")
st.image("static/img/examples/couple_3.jpeg", use_column_width=True)
col1, col2 = st.columns(2)
col1.subheader("Un bambino con un biberon")
col1.markdown("*A baby with a bottle*")
col1.image("static/img/examples/bambino_biberon.jpeg", use_column_width=True)
col2.subheader("Un bambino con un gelato in spiaggia")
col2.markdown("*A child with an ice cream on the beach*")
col2.image(
"static/img/examples/bambino_gelato_spiaggia.jpeg", use_column_width=True
)
st.markdown("### 2. Dresses")
st.markdown("These examples were taken from the Unsplash dataset.")
col1, col2 = st.columns(2)
col1.subheader("Un vestito primaverile")
col1.markdown("*A dress for the spring*")
col1.image("static/img/examples/vestito1.png", use_column_width=True)
col2.subheader("Un vestito autunnale")
col2.markdown("*A dress for the autumn*")
col2.image("static/img/examples/vestito_autunnale.png", use_column_width=True)
st.markdown("### 3. Chairs with different styles")
st.markdown("These examples were taken from the CC dataset.")
col1, col2 = st.columns(2)
col1.subheader("Una sedia semplice")
col1.markdown("*A simple chair*")
col1.image("static/img/examples/sedia_semplice.jpeg", use_column_width=True)
col2.subheader("Una sedia regale")
col2.markdown("*A royal chair*")
col2.image("static/img/examples/sedia_regale.jpeg", use_column_width=True)
col1, col2 = st.columns(2)
col1.subheader("Una sedia moderna")
col1.markdown("*A modern chair*")
col1.image("static/img/examples/sedia_moderna.jpeg", use_column_width=True)
col2.subheader("Una sedia rustica")
col2.markdown("*A rustic chair*")
col2.image("static/img/examples/sedia_rustica.jpeg", use_column_width=True)
st.markdown("## Localization")
st.subheader("Un gatto")
st.markdown("*A cat*")
st.image("static/img/examples/un_gatto.png", use_column_width=True)
st.subheader("Un gatto")
st.markdown("*A cat*")
st.image("static/img/examples/due_gatti.png", use_column_width=True)
st.subheader("Un bambino")
st.markdown("*A child*")
st.image("static/img/examples/child_on_slide.png", use_column_width=True)
st.subheader("A complex example: Uno squalo / un cavallo")
st.markdown("*A shark / a horse*")
st.image("static/img/examples/cavallo_squalo.png", use_column_width=True)
st.markdown("## Image Classification")
st.markdown(
"We report this cool example provided by the "
"[DALLE-mini team](https://github.com/borisdayma/dalle-mini). "
"Is the DALLE-mini logo an *avocado* or an armchair (*poltrona*)?"
)
st.image("static/img/examples/dalle_mini.png", use_column_width=True)
st.markdown(
"It seems it's half an armchair and half an avocado! We thank the DALL-E mini team for the great idea :)"
)
st.subheader("A more classic example")
st.markdown("Is this a pizza, a dish of pasta or a cat?")
st.image("static/img/examples/pizza.png", use_column_width=True)
|