File size: 3,441 Bytes
027887e
128a4c1
622f373
027887e
 
f7c5373
80200b5
e6eb8f2
027887e
 
39b8fb7
128a4c1
027887e
128a4c1
69dfe66
88e550b
7369efb
 
69dfe66
9c02573
69dfe66
e747f27
69dfe66
 
9e5321f
92dc785
39b8fb7
92dc785
 
ac6650e
128a4c1
 
 
 
 
 
 
 
 
b4605c3
 
 
7b79fbf
e625a8b
b4605c3
 
e625a8b
b4605c3
e625a8b
4d35382
128a4c1
 
 
 
 
7369efb
 
 
b4605c3
 
 
 
128a4c1
 
69dfe66
0f27d7b
 
 
027887e
 
b4605c3
a44a03a
 
 
e747f27
69dfe66
 
92dc785
128a4c1
 
 
 
 
7369efb
 
 
92dc785
128a4c1
dc1d715
 
027887e
dc1d715
 
 
 
 
 
 
 
 
 
 
7369efb
dc1d715
7369efb
 
dc1d715
 
128a4c1
80200b5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import io
import os
import requests
import zipfile
import natsort
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from pathlib import Path
from stqdm import stqdm
import streamlit as st
from jax import numpy as jnp
import transformers
from transformers import AutoTokenizer
from torchvision.transforms import Compose, CenterCrop, Normalize, Resize, ToTensor
from torchvision.transforms.functional import InterpolationMode
from modeling_hybrid_clip import FlaxHybridCLIP

import utils


@st.cache(hash_funcs={FlaxHybridCLIP: lambda _: None})
def get_model():
    return FlaxHybridCLIP.from_pretrained("clip-italian/clip-italian")


@st.cache(hash_funcs={transformers.models.bert.tokenization_bert_fast.BertTokenizerFast: lambda _: None})
def get_tokenizer():
    return AutoTokenizer.from_pretrained("dbmdz/bert-base-italian-xxl-uncased", cache_dir="./", use_fast=True)


@st.cache(suppress_st_warning=True)
def download_images():
    # from sentence_transformers import SentenceTransformer, util
    img_folder = "photos/"
    if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
        os.makedirs(img_folder, exist_ok=True)

        photo_filename = "unsplash-25k-photos.zip"
        if not os.path.exists(photo_filename):  # Download dataset if does not exist
            print(f"Downloading {photo_filename}...")
            response = requests.get(f"http://sbert.net/datasets/{photo_filename}", stream=True)
            total_size_in_bytes= int(response.headers.get('content-length', 0))
            block_size = 1024 #1 Kb
            progress_bar = stqdm(total=total_size_in_bytes)  # , unit='iB', unit_scale=True
            content = io.BytesIO()
            for data in response.iter_content(block_size):
                progress_bar.update(len(data))
                content.write(data)
            progress_bar.close()
            z = zipfile.ZipFile(content)
            # content.close()
            print("Extracting the dataset...")
            z.extractall(path=img_folder)
    print("Done.")


@st.cache()
def get_image_features():
    return jnp.load("static/features/features.npy")
    
    
def read_markdown_file(markdown_file):
    return Path(markdown_file).read_text()


"""

# 👋 Ciao!

# CLIP Italian Demo 
## HF-Flax Community Week

In this demo you can search for images in the Unsplash 25k Photos dataset.

🤌 Italian mode on! 🤌
  
"""

query = st.text_input("Insert an italian query text here...")
if query:
    with st.spinner("Computing in progress..."):
        model = get_model()
        download_images()

        image_features = get_image_features()

        model = get_model()
        tokenizer = get_tokenizer()

        image_size = model.config.vision_config.image_size

        val_preprocess = Compose(
            [
                Resize([image_size], interpolation=InterpolationMode.BICUBIC),
                CenterCrop(image_size),
                ToTensor(),
                Normalize(
                    (0.48145466, 0.4578275, 0.40821073),
                    (0.26862954, 0.26130258, 0.27577711),
                ),
            ]
        )

        dataset = utils.CustomDataSet("photos/", transform=val_preprocess)

        image_paths = utils.find_image(
            query, model, dataset, tokenizer, image_features, n=2
        )

    st.image(image_paths)

intro_markdown = read_markdown_file("readme.md")
st.markdown(intro_markdown, unsafe_allow_html=True)