Spaces:
Running
Running
Add static features
Browse files- .gitattributes +1 -0
- app.py +11 -97
- static/features/features.npy +3 -0
- utils.py +69 -0
.gitattributes
CHANGED
@@ -14,3 +14,4 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -16,6 +16,8 @@ from torchvision.transforms.functional import InterpolationMode
|
|
16 |
from tqdm import tqdm
|
17 |
from modeling_hybrid_clip import FlaxHybridCLIP
|
18 |
|
|
|
|
|
19 |
|
20 |
@st.cache
|
21 |
def get_model():
|
@@ -39,92 +41,9 @@ def download_images():
|
|
39 |
print("Done.")
|
40 |
|
41 |
|
42 |
-
@st.cache(
|
43 |
-
def get_image_features(
|
44 |
-
|
45 |
-
|
46 |
-
val_preprocess = transforms.Compose(
|
47 |
-
[
|
48 |
-
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
49 |
-
CenterCrop(image_size),
|
50 |
-
ToTensor(),
|
51 |
-
Normalize(
|
52 |
-
(0.48145466, 0.4578275, 0.40821073),
|
53 |
-
(0.26862954, 0.26130258, 0.27577711),
|
54 |
-
),
|
55 |
-
]
|
56 |
-
)
|
57 |
-
|
58 |
-
dataset = CustomDataSet(image_dir, transform=val_preprocess)
|
59 |
-
|
60 |
-
loader = torch.utils.data.DataLoader(
|
61 |
-
dataset,
|
62 |
-
batch_size=16,
|
63 |
-
shuffle=False,
|
64 |
-
num_workers=4,
|
65 |
-
drop_last=False,
|
66 |
-
)
|
67 |
-
|
68 |
-
return precompute_image_features(loader), dataset
|
69 |
-
|
70 |
-
|
71 |
-
class CustomDataSet(torch.utils.data.Dataset):
|
72 |
-
def __init__(self, main_dir, transform):
|
73 |
-
self.main_dir = main_dir
|
74 |
-
self.transform = transform
|
75 |
-
all_imgs = os.listdir(main_dir)
|
76 |
-
self.total_imgs = natsort.natsorted(all_imgs)
|
77 |
-
|
78 |
-
def __len__(self):
|
79 |
-
return len(self.total_imgs)
|
80 |
-
|
81 |
-
def get_image_name(self, idx):
|
82 |
-
return self.total_imgs[idx]
|
83 |
-
|
84 |
-
def __getitem__(self, idx):
|
85 |
-
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
|
86 |
-
image = PilImage.open(img_loc).convert("RGB")
|
87 |
-
tensor_image = self.transform(image)
|
88 |
-
return tensor_image
|
89 |
-
|
90 |
-
|
91 |
-
def text_encoder(text, tokenizer):
|
92 |
-
inputs = tokenizer(
|
93 |
-
[text],
|
94 |
-
max_length=96,
|
95 |
-
truncation=True,
|
96 |
-
padding="max_length",
|
97 |
-
return_tensors="np",
|
98 |
-
)
|
99 |
-
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[
|
100 |
-
0
|
101 |
-
]
|
102 |
-
embedding /= jnp.linalg.norm(embedding)
|
103 |
-
return jnp.expand_dims(embedding, axis=0)
|
104 |
-
|
105 |
-
|
106 |
-
@st.cache
|
107 |
-
def precompute_image_features(model, loader):
|
108 |
-
image_features = []
|
109 |
-
for i, (images) in enumerate(tqdm(loader)):
|
110 |
-
images = images.permute(0, 2, 3, 1).numpy()
|
111 |
-
features = model.get_image_features(
|
112 |
-
images,
|
113 |
-
)
|
114 |
-
features /= jnp.linalg.norm(features, axis=-1, keepdims=True)
|
115 |
-
image_features.extend(features)
|
116 |
-
return jnp.array(image_features)
|
117 |
-
|
118 |
-
|
119 |
-
def find_image(text_query, dataset, tokenizer, image_features, n=1):
|
120 |
-
zeroshot_weights = text_encoder(text_query, tokenizer)
|
121 |
-
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights)
|
122 |
-
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1))
|
123 |
-
file_paths = []
|
124 |
-
for i in range(1, n + 1):
|
125 |
-
idx = jnp.argsort(distances, axis=0)[-i, 0]
|
126 |
-
file_paths.append("photos/" + dataset.get_image_name(idx))
|
127 |
-
return file_paths
|
128 |
|
129 |
|
130 |
"""
|
@@ -142,6 +61,9 @@ if query:
|
|
142 |
model = get_model()
|
143 |
download_images()
|
144 |
|
|
|
|
|
|
|
145 |
tokenizer = AutoTokenizer.from_pretrained(
|
146 |
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True
|
147 |
)
|
@@ -160,18 +82,10 @@ if query:
|
|
160 |
]
|
161 |
)
|
162 |
|
163 |
-
dataset = CustomDataSet("photos/", transform=val_preprocess)
|
164 |
|
165 |
-
|
166 |
-
dataset,
|
167 |
-
batch_size=16,
|
168 |
-
shuffle=False,
|
169 |
-
num_workers=2,
|
170 |
-
drop_last=False,
|
171 |
)
|
172 |
|
173 |
-
image_features = precompute_image_features(model, loader)
|
174 |
-
|
175 |
-
image_paths = find_image(query, dataset, tokenizer, image_features, n=2)
|
176 |
-
|
177 |
st.image(image_paths)
|
|
|
16 |
from tqdm import tqdm
|
17 |
from modeling_hybrid_clip import FlaxHybridCLIP
|
18 |
|
19 |
+
import utils
|
20 |
+
|
21 |
|
22 |
@st.cache
|
23 |
def get_model():
|
|
|
41 |
print("Done.")
|
42 |
|
43 |
|
44 |
+
@st.cache()
|
45 |
+
def get_image_features():
|
46 |
+
return jnp.load("static/features/features.npy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
"""
|
|
|
61 |
model = get_model()
|
62 |
download_images()
|
63 |
|
64 |
+
image_features = get_image_features()
|
65 |
+
|
66 |
+
model = get_model()
|
67 |
tokenizer = AutoTokenizer.from_pretrained(
|
68 |
"dbmdz/bert-base-italian-xxl-uncased", cache_dir=None, use_fast=True
|
69 |
)
|
|
|
82 |
]
|
83 |
)
|
84 |
|
85 |
+
dataset = utils.CustomDataSet("photos/", transform=val_preprocess)
|
86 |
|
87 |
+
image_paths = utils.find_image(
|
88 |
+
query, model, dataset, tokenizer, image_features, n=2
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
|
|
|
|
|
|
|
|
91 |
st.image(image_paths)
|
static/features/features.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53a956386a27089b0bfe84bc311fbee885983815f5a6e9d9e58ec5c3a52015e9
|
3 |
+
size 51191936
|
utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from jax import numpy as jnp
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
import zipfile
|
8 |
+
import io
|
9 |
+
import natsort
|
10 |
+
from PIL import Image as PilImage
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
|
14 |
+
class CustomDataSet(torch.utils.data.Dataset):
|
15 |
+
def __init__(self, main_dir, transform):
|
16 |
+
self.main_dir = main_dir
|
17 |
+
self.transform = transform
|
18 |
+
all_imgs = os.listdir(main_dir)
|
19 |
+
self.total_imgs = natsort.natsorted(all_imgs)
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.total_imgs)
|
23 |
+
|
24 |
+
def get_image_name(self, idx):
|
25 |
+
return self.total_imgs[idx]
|
26 |
+
|
27 |
+
def __getitem__(self, idx):
|
28 |
+
img_loc = os.path.join(self.main_dir, self.total_imgs[idx])
|
29 |
+
image = PilImage.open(img_loc).convert("RGB")
|
30 |
+
tensor_image = self.transform(image)
|
31 |
+
return tensor_image
|
32 |
+
|
33 |
+
|
34 |
+
def text_encoder(text, model, tokenizer):
|
35 |
+
inputs = tokenizer(
|
36 |
+
[text],
|
37 |
+
max_length=96,
|
38 |
+
truncation=True,
|
39 |
+
padding="max_length",
|
40 |
+
return_tensors="np",
|
41 |
+
)
|
42 |
+
embedding = model.get_text_features(inputs["input_ids"], inputs["attention_mask"])[
|
43 |
+
0
|
44 |
+
]
|
45 |
+
embedding /= jnp.linalg.norm(embedding)
|
46 |
+
return jnp.expand_dims(embedding, axis=0)
|
47 |
+
|
48 |
+
|
49 |
+
def precompute_image_features(model, loader):
|
50 |
+
image_features = []
|
51 |
+
for i, (images) in enumerate(tqdm(loader)):
|
52 |
+
images = images.permute(0, 2, 3, 1).numpy()
|
53 |
+
features = model.get_image_features(
|
54 |
+
images,
|
55 |
+
)
|
56 |
+
features /= jnp.linalg.norm(features, axis=-1, keepdims=True)
|
57 |
+
image_features.extend(features)
|
58 |
+
return jnp.array(image_features)
|
59 |
+
|
60 |
+
|
61 |
+
def find_image(text_query, model, dataset, tokenizer, image_features, n=1):
|
62 |
+
zeroshot_weights = text_encoder(text_query, model, tokenizer)
|
63 |
+
zeroshot_weights /= jnp.linalg.norm(zeroshot_weights)
|
64 |
+
distances = jnp.dot(image_features, zeroshot_weights.reshape(-1, 1))
|
65 |
+
file_paths = []
|
66 |
+
for i in range(1, n + 1):
|
67 |
+
idx = jnp.argsort(distances, axis=0)[-i, 0]
|
68 |
+
file_paths.append("photos/" + dataset.get_image_name(idx))
|
69 |
+
return file_paths
|