Spaces:
Running
Running
File size: 8,353 Bytes
ea3b7ec 3fc62db ea3b7ec cdb3af7 ea3b7ec 0466d84 3fc62db ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec 40fe90f ea3b7ec 3fc62db ea3b7ec e45c79f ea3b7ec 3fc62db e45c79f 6004a14 e45c79f 6004a14 e45c79f 6004a14 e45c79f 6004a14 e45c79f 3fc62db e45c79f ea3b7ec e45c79f ea3b7ec e45c79f ea3b7ec bd6347d 9c82e81 bd6347d 9c82e81 1e05f49 1977c6a 1e05f49 ea3b7ec 20c970c ea3b7ec cc47bdc ea3b7ec 6004a14 ea3b7ec 6004a14 ea3b7ec bd6347d cdb3af7 e44c759 cdb3af7 ea3b7ec e8aa0cd ea3b7ec bd6347d dac86dc bd6347d ea3b7ec 40fe90f 0466d84 40fe90f e44c759 ea3b7ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import streamlit as st
from text2image import get_model, get_tokenizer, get_image_transform
from utils import text_encoder
from torchvision import transforms
from PIL import Image
from jax import numpy as jnp
import pandas as pd
import numpy as np
import requests
import psutil
import time
import jax
import gc
headers = {
"User-Agent":
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
preprocess = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize(224),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711)
),
]
)
def resize_longer(image, longer_size=224):
old_size = image.size
ratio = float(longer_size) / max(old_size)
new_size = tuple([int(x * ratio) for x in old_size])
image = image.resize(new_size, Image.ANTIALIAS)
return image
def pad_to_square(image):
(a,b)=image.shape[:2]
if a<b:
ah = (b - a) // 2
padding=((ah,b - a -ah), (0,0), (0,0))
else:
bh = (a - b) // 2
padding=((0,0), (bh,a-b-bh), (0,0))
return np.pad(image, padding,mode='constant',constant_values=127)
def image_encoder(image, model):
image = np.transpose(image, (0, 2, 3, 1))
features = model.get_image_features(image)
feature_norms = jnp.linalg.norm(features, axis=-1, keepdims=True)
features = features / feature_norms
return features, feature_norms
def gen_image_batch(image_url, image_size=224, pixel_size=10):
n_pixels = image_size // pixel_size + 1
image_batch = []
masks = []
is_vertical = []
is_horizontal = []
image_raw = requests.get(image_url, stream=True).raw
image = Image.open(image_raw).convert("RGB")
image = np.array(resize_longer(image, longer_size=image_size))
gray = np.ones_like(image) * 127
mask = np.ones_like(image[:,:,:1])
image_batch.append(image)
masks.append(mask)
is_vertical.append(True)
is_horizontal.append(True)
for i in range(0, image.shape[0] // pixel_size + 1):
for j in range(i+1, image.shape[0] // pixel_size + 2):
m = mask.copy()
m[:min(i*pixel_size, image_size), :] = 0
m[min(j*pixel_size, image_size):, :] = 0
neg_m = 1 - m
image_batch.append(image.copy() * m + gray * neg_m)
masks.append(m)
is_vertical.append(False)
is_horizontal.append(True)
for i in range(0, image.shape[1] // pixel_size + 1):
for j in range(i+1, image.shape[1] // pixel_size + 2):
m = mask.copy()
m[:, :min(i*pixel_size, image_size)] = 0
m[:, min(j*pixel_size, image_size):] = 0
neg_m = 1 - m
image_batch.append(image.copy() * m + gray * neg_m)
masks.append(m)
is_vertical.append(True)
is_horizontal.append(False)
return image_batch, masks, is_vertical, is_horizontal
def get_heatmap(image_url, text, pixel_size=10, iterations=3):
tokenizer = get_tokenizer()
model = get_model()
image_size = model.config.vision_config.image_size
images, masks, vertical, horizontal = gen_image_batch(image_url, pixel_size=pixel_size)
input_image = images[0].copy()
images = np.stack([preprocess(pad_to_square(image)) for image in images], axis=0)
image_embeddings, embedding_norms = image_encoder(images, model)
text_embeddings, _ = text_encoder(text, model, tokenizer)
vertical_scores = jnp.zeros((masks[0].shape[1], 512))
vertical_masks = jnp.zeros((masks[0].shape[1], 1))
horizontal_scores = jnp.zeros((masks[0].shape[0], 512))
horizontal_masks = jnp.zeros((masks[0].shape[0], 1))
for e, n, m, v, h in zip(image_embeddings, embedding_norms, masks, vertical, horizontal):
# sim = (jnp.matmul(e, text_embedding.T)) # + 1) / 2
# sim = jax.nn.relu(sim)
# if full_sim is None:
# full_sim = sim
# sim = jax.nn.relu(sim - full_sim)
emb = jnp.expand_dims(e, axis=0) #* n
if v:
vm = jnp.any(m, axis=0)
vertical_scores = vertical_scores + (emb * vm) / jnp.mean(vm)
vertical_masks = vertical_masks + vm / jnp.mean(vm)
if h:
hm = jnp.any(m, axis=1)
horizontal_scores = horizontal_scores + (emb * hm) / jnp.mean(hm)
horizontal_masks = horizontal_masks + hm / jnp.mean(hm)
embs_1 = jnp.expand_dims((vertical_scores), axis=0) * jnp.expand_dims(jnp.abs(horizontal_scores), axis=1)
embs_2 = jnp.expand_dims(jnp.abs(vertical_scores), axis=0) * jnp.expand_dims((horizontal_scores), axis=1)
full_embs = jnp.minimum(embs_1, embs_2)
mask_sum = jnp.expand_dims(vertical_masks + 1, axis=0) * jnp.expand_dims(horizontal_masks + 1, axis=1)
full_embs = (full_embs / mask_sum)
orig_shape = full_embs.shape
sims = jnp.matmul(jnp.reshape(full_embs, (-1, 512)), text_embeddings.T)
score = jnp.reshape(sims, (*orig_shape[:2], 1))
for i in range(iterations):
score = jnp.clip(score - jnp.mean(score), 0, jnp.inf)
score = (score - jnp.min(score)) / (jnp.max(score) - jnp.min(score))
print(jnp.min(score), jnp.max(score))
return np.asarray(score), input_image
def app():
st.title("Zero-Shot Localization")
st.markdown(
"""
### π Ciao!
Here you can find an example for zero-shot localization that will show you where in an image the model sees an object.
The object location is computed by masking different areas of the image and looking at
how the similarity to the image description changes. If you want to have a look at the implementation in detail,
you can find it in [this Colab](https://colab.research.google.com/drive/10neENr1DEAFq_GzsLqBDo0gZ50hOhkOr?usp=sharing).
On the two parameters:
+ the *pixel size* defines the resolution of the localization map. A pixel size of 15 means
that 15 pixels in the original image will form 1 pixel in the heatmap.
+ The *refinement iterations* are just a cheap operation to reduce background noise. Too few iterations will leave a lot of noise.
Too many will shrink the heatmap too much.
π€ Italian mode on! π€
For example, try typing "gatto" (cat) or "cane" (dog) in the space for label and click "locate"!
"""
)
image_url = st.text_input(
"You can input the URL of an image here...",
value="https://www.tuttosuigatti.it/files/styles/full_width/public/images/featured/205/cani-e-gatti.jpg",
)
MAX_ITER = 1
col1, col2 = st.columns([0.75, 0.25])
with col2:
pixel_size = st.selectbox("Pixel Size", options=range(5, 26, 5), index=3)
iterations = st.selectbox("Refinement Steps", options=range(0, 6, 1), index=0)
compute = st.button("LOCATE")
with col1:
caption = st.text_input(f"Insert label...")
if compute:
with st.spinner("Waiting for resources..."):
sleep_time = 5
while psutil.cpu_percent() > 50:
time.sleep(sleep_time)
if not caption or not image_url:
st.error("Please choose one image and at least one label")
else:
with st.spinner(
"Computing... This might take up to a few minutes depending on the current load π \n"
"Otherwise, you can use this [Colab notebook](https://colab.research.google.com/drive/10neENr1DEAFq_GzsLqBDo0gZ50hOhkOr?usp=sharing)"
):
heatmap, image = get_heatmap(image_url, caption, pixel_size, iterations)
with col1:
st.image(image, use_column_width=True)
st.image(heatmap, use_column_width=True)
st.image(np.asarray(image) / 255.0 * heatmap, use_column_width=True)
gc.collect()
elif image_url:
image = requests.get(
image_url,
headers=headers,
stream=True,
).raw
image = Image.open(image).convert("RGB")
with col1:
st.image(image)
|