Spaces:
Running
Running
Push localization with load management to master
Browse files- localization.py +20 -24
localization.py
CHANGED
@@ -13,14 +13,10 @@ import jax
|
|
13 |
import gc
|
14 |
|
15 |
|
16 |
-
preprocess = transforms.Compose(
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
|
21 |
-
),
|
22 |
-
]
|
23 |
-
)
|
24 |
|
25 |
|
26 |
def pad_to_square(image, size=224):
|
@@ -54,19 +50,19 @@ def gen_image_batch(image_url, image_size=224, pixel_size=10):
|
|
54 |
masks.append(mask)
|
55 |
|
56 |
for i in range(0, n_pixels):
|
57 |
-
for j in range(i
|
58 |
m = mask.copy()
|
59 |
-
m[:
|
60 |
-
m[min(j
|
61 |
neg_m = 1 - m
|
62 |
image_batch.append(image * m + gray * neg_m)
|
63 |
masks.append(m)
|
64 |
|
65 |
-
for i in range(0, n_pixels
|
66 |
-
for j in range(i
|
67 |
m = mask.copy()
|
68 |
-
m[:, :
|
69 |
-
m[:, min(j
|
70 |
neg_m = 1 - m
|
71 |
image_batch.append(image * m + gray * neg_m)
|
72 |
masks.append(m)
|
@@ -79,9 +75,7 @@ def get_heatmap(image_url, text, pixel_size=10, iterations=3):
|
|
79 |
model = get_model()
|
80 |
image_size = model.config.vision_config.image_size
|
81 |
text_embedding = text_encoder(text, model, tokenizer)
|
82 |
-
images, masks = gen_image_batch(
|
83 |
-
image_url, image_size=image_size, pixel_size=pixel_size
|
84 |
-
)
|
85 |
|
86 |
input_image = images[0].copy()
|
87 |
images = np.stack([preprocess(image) for image in images], axis=0)
|
@@ -118,8 +112,6 @@ def app():
|
|
118 |
|
119 |
For example, try typing "gatto" (cat) or "cane" (dog) in the space for label and click "locate"!
|
120 |
|
121 |
-
*Depending on the server load, the computation time may vary. With normal load and pixel size 10, it can take up to two minutes.
|
122 |
-
*
|
123 |
"""
|
124 |
)
|
125 |
|
@@ -133,9 +125,13 @@ def app():
|
|
133 |
col1, col2 = st.beta_columns([3, 1])
|
134 |
|
135 |
with col2:
|
136 |
-
pixel_size = st.selectbox(
|
|
|
|
|
137 |
|
138 |
-
iterations = st.selectbox(
|
|
|
|
|
139 |
|
140 |
compute = st.button("LOCATE")
|
141 |
|
@@ -152,7 +148,7 @@ def app():
|
|
152 |
|
153 |
|
154 |
if not caption or not image_url:
|
155 |
-
st.error("Please
|
156 |
else:
|
157 |
with st.spinner("Computing..."):
|
158 |
heatmap, image = get_heatmap(image_url, caption, pixel_size, iterations)
|
@@ -164,7 +160,7 @@ def app():
|
|
164 |
gc.collect()
|
165 |
|
166 |
elif image_url:
|
167 |
-
image_raw = requests.get(image_url, stream=True,).raw
|
168 |
image = Image.open(image_raw).convert("RGB")
|
169 |
with col1:
|
170 |
st.image(image)
|
|
|
13 |
import gc
|
14 |
|
15 |
|
16 |
+
preprocess = transforms.Compose([
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
19 |
+
])
|
|
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
def pad_to_square(image, size=224):
|
|
|
50 |
masks.append(mask)
|
51 |
|
52 |
for i in range(0, n_pixels):
|
53 |
+
for j in range(i+1, n_pixels):
|
54 |
m = mask.copy()
|
55 |
+
m[:min(i*pixel_size, image_size) + 1, :] = 0
|
56 |
+
m[min(j*pixel_size, image_size) + 1:, :] = 0
|
57 |
neg_m = 1 - m
|
58 |
image_batch.append(image * m + gray * neg_m)
|
59 |
masks.append(m)
|
60 |
|
61 |
+
for i in range(0, n_pixels+1):
|
62 |
+
for j in range(i+1, n_pixels+1):
|
63 |
m = mask.copy()
|
64 |
+
m[:, :min(i*pixel_size + 1, image_size)] = 0
|
65 |
+
m[:, min(j*pixel_size + 1, image_size):] = 0
|
66 |
neg_m = 1 - m
|
67 |
image_batch.append(image * m + gray * neg_m)
|
68 |
masks.append(m)
|
|
|
75 |
model = get_model()
|
76 |
image_size = model.config.vision_config.image_size
|
77 |
text_embedding = text_encoder(text, model, tokenizer)
|
78 |
+
images, masks = gen_image_batch(image_url, image_size=image_size, pixel_size=pixel_size)
|
|
|
|
|
79 |
|
80 |
input_image = images[0].copy()
|
81 |
images = np.stack([preprocess(image) for image in images], axis=0)
|
|
|
112 |
|
113 |
For example, try typing "gatto" (cat) or "cane" (dog) in the space for label and click "locate"!
|
114 |
|
|
|
|
|
115 |
"""
|
116 |
)
|
117 |
|
|
|
125 |
col1, col2 = st.beta_columns([3, 1])
|
126 |
|
127 |
with col2:
|
128 |
+
pixel_size = st.selectbox(
|
129 |
+
"Pixel Size", options=range(10, 21, 5), index=0
|
130 |
+
)
|
131 |
|
132 |
+
iterations = st.selectbox(
|
133 |
+
"Refinement Steps", options=range(3, 30, 3), index=0
|
134 |
+
)
|
135 |
|
136 |
compute = st.button("LOCATE")
|
137 |
|
|
|
148 |
|
149 |
|
150 |
if not caption or not image_url:
|
151 |
+
st.error("Please choose one image and at least one label")
|
152 |
else:
|
153 |
with st.spinner("Computing..."):
|
154 |
heatmap, image = get_heatmap(image_url, caption, pixel_size, iterations)
|
|
|
160 |
gc.collect()
|
161 |
|
162 |
elif image_url:
|
163 |
+
image_raw = requests.get(image_url, stream=True, ).raw
|
164 |
image = Image.open(image_raw).convert("RGB")
|
165 |
with col1:
|
166 |
st.image(image)
|