File size: 3,359 Bytes
476b409
73b442d
ebda551
476b409
 
 
 
 
 
 
 
 
 
 
 
73b442d
 
476b409
82f2d56
 
476b409
 
 
 
 
 
 
 
 
ebda551
 
 
 
 
476b409
 
 
 
 
73b442d
476b409
 
 
 
ebda551
476b409
 
 
 
 
 
73b442d
476b409
 
 
 
73b442d
476b409
 
0a8fce8
 
 
 
 
476b409
 
 
 
 
 
 
 
 
73b442d
476b409
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from settings import Settings
from models import Question, QuestionAnswerPair
from agent import ManagerAgent
import pandas as pd
import logging
import json
import asyncio
import nest_asyncio
nest_asyncio.apply()
logger = logging.getLogger(__name__)

class Runner():
    def __init__(self, settings: Settings):
        self.settings = settings

    def _save_pairs(self, pairs: list[QuestionAnswerPair], username: str):
        """Write the question answer pairs to a user-specific file."""
        answers = [pair.model_dump() for pair in pairs if pair is not None]
        file_name = f"answers_{username}.json"
        with open(file_name, "w") as f:
            json.dump(answers, f, indent=4)

    def _enrich_question_text(self, item):
        task_id = item.task_id
        file_name = item.file_name
        question_text = (
            f"{item.question} "
            "Think hard to answer. Parse all statements in the question to make a plan. "
            "Your final answer should be a number or as few words as possible. "
            "Only use abbreviations when the question calls for abbreviations. "
            "If needed, use a comma separated list of values; the comma is always followed by a space"
            f"Critically review your answer before making it the final answer. "
            f"Double check the answer to make sure it meets all format requirements stated in the question. "
            f"task_id: {task_id}."
        )
        if file_name:
            question_text = f"{question_text} file_name: {file_name} (use tools to fetch the file)"
        return question_text

    async def _run_agent_async(self, item: Question):
        """Runs the agent asynchronously."""
        task_id = item.task_id
        question_text = self._enrich_question_text(item)
        try:
            answer = await asyncio.to_thread(ManagerAgent(self.settings), question_text)
        except Exception as e:
            logger.error(f"Error running agent on task {task_id}: {e}")
            answer = f"AGENT ERROR: {e}"
        return QuestionAnswerPair(task_id=task_id,
                                  question=item.question, answer=str(answer))

    def _assign_questions(self, questions: list[Question]):
        """Runs the asynchronous loop and returns task outputs."""
        tasks = [self._run_agent_async(item) for item in questions]
        return asyncio.gather(*tasks)

    def run_agent(self, questions: list[Question], username: str) -> pd.DataFrame:
        """Run the agent(s) async, save answers and return a dataframe"""
        # Assign questions to agents and wait
        try:
            loop = asyncio.get_running_loop()
        except RuntimeError:  # No running loop, create one
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)

        def run_tasks_in_thread():
            question_answer_pairs = loop.run_until_complete(
                self._assign_questions(questions))
            return question_answer_pairs

        pairs = run_tasks_in_thread()

        # save json to disk and return a dataframe
        self._save_pairs(pairs, username)
        results_log = [pair.model_dump() for pair in pairs if pair is not None]
        if not results_log:
            logger.warning("Agent did not produce any answers to submit.")

        return pd.DataFrame(results_log)