Spaces:
Running
Running
File size: 12,325 Bytes
c724d0c 13ebb90 c724d0c 13ebb90 c724d0c 13ebb90 dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c 13ebb90 c724d0c 13ebb90 c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c 13ebb90 c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c 13ebb90 dd055bb 13ebb90 c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c dd055bb c724d0c 13ebb90 dd055bb 13ebb90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import os, time, uuid, logging
from typing import List, Optional, Dict, Any, Tuple
import numpy as np
import requests
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct
# ---------- logging ----------
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
LOG = logging.getLogger("remote_indexer")
# ---------- ENV ----------
EMB_BACKEND = os.getenv("EMB_BACKEND", "hf").strip().lower() # "hf" (défaut) ou "deepinfra"
# HF
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
# Si tu as un Inference Endpoint privé, ou si tu veux l’API "models/..." :
# ex: https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2
HF_URL = (os.getenv("HF_API_URL", "").strip()
or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")
# DeepInfra
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "thenlper/gte-small").strip()
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/embeddings").strip()
# Qdrant
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
# Auth d’API du service (simple header)
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
LOG.info(f"Embeddings backend = {EMB_BACKEND}")
if EMB_BACKEND == "hf" and not HF_TOKEN:
LOG.warning("HF_API_TOKEN manquant — HF /index et /query échoueront.")
if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
LOG.warning("DEEPINFRA_API_KEY manquant — DeepInfra embeddings échoueront.")
# ---------- Clients ----------
try:
qdr = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API if QDRANT_API else None)
except Exception as e:
LOG.warning(f"Qdrant client init: {e}")
# ---------- Pydantic ----------
class FileIn(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str = Field(..., min_length=1)
files: List[FileIn]
chunk_size: int = 1200
overlap: int = 200
batch_size: int = 8
store_text: bool = True
class QueryRequest(BaseModel):
project_id: str
query: str
top_k: int = 6
# ---------- Jobs store (mémoire) ----------
JOBS: Dict[str, Dict[str, Any]] = {} # {job_id: {"status": "...", "logs": [...], "created": ts}}
# ---------- Utils ----------
def _auth(x_auth: Optional[str]):
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized")
def _hf_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
if not HF_TOKEN:
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
try:
r = requests.post(HF_URL, headers=headers, json=batch, timeout=120)
size = int(r.headers.get("Content-Length", "0"))
if r.status_code >= 400:
# Log détaillé pour comprendre le 403/4xx
try:
LOG.error(f"HF error {r.status_code}: {r.text}")
except Exception:
LOG.error(f"HF error {r.status_code} (no body)")
r.raise_for_status()
data = r.json()
except Exception as e:
raise RuntimeError(f"HF POST failed: {e}")
arr = np.array(data, dtype=np.float32)
# [batch, dim] (sentence-transformers) ou [batch, tokens, dim] -> mean-pooling
if arr.ndim == 3:
arr = arr.mean(axis=1)
if arr.ndim != 2:
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
# normalisation
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
arr = arr / norms
return arr.astype(np.float32), size
def _di_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
if not DI_TOKEN:
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
payload = {"model": DI_MODEL, "input": batch}
try:
r = requests.post(DI_URL, headers=headers, json=payload, timeout=120)
size = int(r.headers.get("Content-Length", "0"))
if r.status_code >= 400:
try:
LOG.error(f"DeepInfra error {r.status_code}: {r.text}")
except Exception:
LOG.error(f"DeepInfra error {r.status_code} (no body)")
r.raise_for_status()
js = r.json()
except Exception as e:
raise RuntimeError(f"DeepInfra POST failed: {e}")
# OpenAI-like : {"data":[{"embedding":[...],"index":0}, ...]}
data = js.get("data")
if not isinstance(data, list) or not data:
raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
embs = [d.get("embedding") for d in data]
arr = np.asarray(embs, dtype=np.float32)
if arr.ndim != 2:
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
# normalisation
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
arr = arr / norms
return arr.astype(np.float32), size
def _post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
if EMB_BACKEND == "hf":
return _hf_post_embeddings(batch)
elif EMB_BACKEND == "deepinfra":
return _di_post_embeddings(batch)
else:
raise RuntimeError(f"EMB_BACKEND inconnu: {EMB_BACKEND}")
def _ensure_collection(name: str, dim: int):
try:
qdr.get_collection(name)
return
except Exception:
pass
qdr.create_collection(
collection_name=name,
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
)
def _chunk_with_spans(text: str, size: int, overlap: int):
n = len(text)
if size <= 0:
yield (0, n, text)
return
i = 0
while i < n:
j = min(n, i + size)
yield (i, j, text[i:j])
i = max(0, j - overlap)
if i >= n:
break
def _append_log(job_id: str, line: str):
job = JOBS.get(job_id)
if not job: return
job["logs"].append(line)
def _set_status(job_id: str, status: str):
job = JOBS.get(job_id)
if not job: return
job["status"] = status
# ---------- Background task ----------
def run_index_job(job_id: str, req: IndexRequest):
try:
_set_status(job_id, "running")
total_chunks = 0
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backend={EMB_BACKEND}")
# warmup -> dimension
warmup = []
for f in req.files[:1]:
warmup.append(next(_chunk_with_spans(f.text, req.chunk_size, req.overlap))[2])
embs, sz = _post_embeddings(warmup)
dim = embs.shape[1]
col = f"proj_{req.project_id}"
_ensure_collection(col, dim)
_append_log(job_id, f"Collection ready: {col} (dim={dim})")
point_id = 0
# boucle fichiers
for fi, f in enumerate(req.files, 1):
chunks, metas = [], []
for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
chunks.append(chunk_txt)
payload = {"path": f.path, "chunk": ci, "start": start, "end": end}
if req.store_text:
payload["text"] = chunk_txt
metas.append(payload)
if len(chunks) >= req.batch_size:
vecs, sz = _post_embeddings(chunks)
batch_points = []
for k, vec in enumerate(vecs):
batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
point_id += 1
qdr.upsert(collection_name=col, points=batch_points)
total_chunks += len(chunks)
_append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")
chunks, metas = [], []
# flush fin de fichier
if chunks:
vecs, sz = _post_embeddings(chunks)
batch_points = []
for k, vec in enumerate(vecs):
batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
point_id += 1
qdr.upsert(collection_name=col, points=batch_points)
total_chunks += len(chunks)
_append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")
_append_log(job_id, f"Done. chunks={total_chunks}")
_set_status(job_id, "done")
LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
except Exception as e:
LOG.exception("Index job failed")
_append_log(job_id, f"ERROR: {e}")
_set_status(job_id, "error")
# ---------- API ----------
app = FastAPI()
@app.get("/")
def root():
return {
"ok": True,
"service": "remote-indexer",
"backend": EMB_BACKEND,
"hf_url": HF_URL if EMB_BACKEND == "hf" else None,
"di_model": DI_MODEL if EMB_BACKEND == "deepinfra" else None,
"docs": "/health, /index, /status/{job_id}, /query, /wipe"
}
@app.get("/health")
def health():
return {"ok": True}
def _check_backend_ready(for_query=False):
if EMB_BACKEND == "hf" and not HF_TOKEN:
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")
@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
_check_backend_ready()
job_id = uuid.uuid4().hex[:12]
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
background_tasks.add_task(run_index_job, job_id, req)
return {"job_id": job_id}
@app.get("/status/{job_id}")
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
j = JOBS.get(job_id)
if not j:
raise HTTPException(404, "job inconnu")
return {"status": j["status"], "logs": j["logs"][-800:]}
@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
_check_backend_ready(for_query=True)
vec, _ = _post_embeddings([req.query])
vec = vec[0].tolist()
col = f"proj_{req.project_id}"
try:
res = qdr.search(collection_name=col, query_vector=vec, limit=int(req.top_k))
except Exception as e:
raise HTTPException(400, f"Search failed: {e}")
out = []
for p in res:
pl = p.payload or {}
txt = pl.get("text")
if txt and len(txt) > 800:
txt = txt[:800] + "..."
out.append({"path": pl.get("path"), "chunk": pl.get("chunk"), "start": pl.get("start"), "end": pl.get("end"), "text": txt})
return {"results": out}
@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
raise HTTPException(401, "Unauthorized")
col = f"proj_{project_id}"
try:
qdr.delete_collection(col)
return {"ok": True}
except Exception as e:
raise HTTPException(400, f"wipe failed: {e}")
# ---------- Entrypoint ----------
if __name__ == "__main__":
import uvicorn
port = int(os.getenv("PORT", "7860"))
LOG.info(f"===== Application Startup on PORT {port} =====")
uvicorn.run(app, host="0.0.0.0", port=port)
|