File size: 12,325 Bytes
c724d0c
 
 
 
13ebb90
c724d0c
13ebb90
c724d0c
 
 
 
 
13ebb90
dd055bb
c724d0c
 
 
dd055bb
 
 
c724d0c
 
dd055bb
 
 
 
 
 
 
 
 
c724d0c
dd055bb
c724d0c
 
 
dd055bb
 
 
 
 
 
 
 
c724d0c
 
13ebb90
 
 
 
c724d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ebb90
c724d0c
 
 
 
 
 
 
dd055bb
c724d0c
dd055bb
c724d0c
dd055bb
 
 
 
 
 
 
 
 
 
 
 
 
 
c724d0c
13ebb90
c724d0c
 
 
dd055bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724d0c
 
 
 
dd055bb
 
 
 
 
 
 
 
c724d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd055bb
c724d0c
dd055bb
c724d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ebb90
 
dd055bb
 
 
 
 
 
 
 
13ebb90
c724d0c
 
 
 
dd055bb
 
 
 
 
 
c724d0c
 
dd055bb
 
 
c724d0c
 
 
 
 
 
 
dd055bb
 
c724d0c
 
 
 
 
 
 
dd055bb
 
 
c724d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd055bb
 
c724d0c
 
 
 
 
 
13ebb90
dd055bb
13ebb90
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# -*- coding: utf-8 -*-
from __future__ import annotations
import os, time, uuid, logging
from typing import List, Optional, Dict, Any, Tuple

import numpy as np
import requests
from fastapi import FastAPI, BackgroundTasks, Header, HTTPException
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct

# ---------- logging ----------
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
LOG = logging.getLogger("remote_indexer")

# ---------- ENV ----------
EMB_BACKEND = os.getenv("EMB_BACKEND", "hf").strip().lower()   # "hf" (défaut) ou "deepinfra"

# HF
HF_TOKEN   = os.getenv("HF_API_TOKEN", "").strip()
HF_MODEL   = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
# Si tu as un Inference Endpoint privé, ou si tu veux l’API "models/..." :
# ex: https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2
HF_URL     = (os.getenv("HF_API_URL", "").strip()
              or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")

# DeepInfra
DI_TOKEN   = os.getenv("DEEPINFRA_API_KEY", "").strip()
DI_MODEL   = os.getenv("DEEPINFRA_EMBED_MODEL", "thenlper/gte-small").strip()
DI_URL     = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/embeddings").strip()

# Qdrant
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()

# Auth d’API du service (simple header)
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()

LOG.info(f"Embeddings backend = {EMB_BACKEND}")
if EMB_BACKEND == "hf" and not HF_TOKEN:
    LOG.warning("HF_API_TOKEN manquant — HF /index et /query échoueront.")
if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
    LOG.warning("DEEPINFRA_API_KEY manquant — DeepInfra embeddings échoueront.")

# ---------- Clients ----------
try:
    qdr = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API if QDRANT_API else None)
except Exception as e:
    LOG.warning(f"Qdrant client init: {e}")

# ---------- Pydantic ----------
class FileIn(BaseModel):
    path: str
    text: str

class IndexRequest(BaseModel):
    project_id: str = Field(..., min_length=1)
    files: List[FileIn]
    chunk_size: int = 1200
    overlap: int = 200
    batch_size: int = 8
    store_text: bool = True

class QueryRequest(BaseModel):
    project_id: str
    query: str
    top_k: int = 6

# ---------- Jobs store (mémoire) ----------
JOBS: Dict[str, Dict[str, Any]] = {}  # {job_id: {"status": "...", "logs": [...], "created": ts}}

# ---------- Utils ----------
def _auth(x_auth: Optional[str]):
    if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
        raise HTTPException(status_code=401, detail="Unauthorized")

def _hf_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
    if not HF_TOKEN:
        raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
    headers = {"Authorization": f"Bearer {HF_TOKEN}"}
    try:
        r = requests.post(HF_URL, headers=headers, json=batch, timeout=120)
        size = int(r.headers.get("Content-Length", "0"))
        if r.status_code >= 400:
            # Log détaillé pour comprendre le 403/4xx
            try:
                LOG.error(f"HF error {r.status_code}: {r.text}")
            except Exception:
                LOG.error(f"HF error {r.status_code} (no body)")
            r.raise_for_status()
        data = r.json()
    except Exception as e:
        raise RuntimeError(f"HF POST failed: {e}")

    arr = np.array(data, dtype=np.float32)
    # [batch, dim] (sentence-transformers) ou [batch, tokens, dim] -> mean-pooling
    if arr.ndim == 3:
        arr = arr.mean(axis=1)
    if arr.ndim != 2:
        raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
    # normalisation
    norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
    arr = arr / norms
    return arr.astype(np.float32), size

def _di_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
    if not DI_TOKEN:
        raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
    headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
    payload = {"model": DI_MODEL, "input": batch}
    try:
        r = requests.post(DI_URL, headers=headers, json=payload, timeout=120)
        size = int(r.headers.get("Content-Length", "0"))
        if r.status_code >= 400:
            try:
                LOG.error(f"DeepInfra error {r.status_code}: {r.text}")
            except Exception:
                LOG.error(f"DeepInfra error {r.status_code} (no body)")
            r.raise_for_status()
        js = r.json()
    except Exception as e:
        raise RuntimeError(f"DeepInfra POST failed: {e}")

    # OpenAI-like : {"data":[{"embedding":[...],"index":0}, ...]}
    data = js.get("data")
    if not isinstance(data, list) or not data:
        raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
    embs = [d.get("embedding") for d in data]
    arr = np.asarray(embs, dtype=np.float32)
    if arr.ndim != 2:
        raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
    # normalisation
    norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
    arr = arr / norms
    return arr.astype(np.float32), size

def _post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
    if EMB_BACKEND == "hf":
        return _hf_post_embeddings(batch)
    elif EMB_BACKEND == "deepinfra":
        return _di_post_embeddings(batch)
    else:
        raise RuntimeError(f"EMB_BACKEND inconnu: {EMB_BACKEND}")

def _ensure_collection(name: str, dim: int):
    try:
        qdr.get_collection(name)
        return
    except Exception:
        pass
    qdr.create_collection(
        collection_name=name,
        vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
    )

def _chunk_with_spans(text: str, size: int, overlap: int):
    n = len(text)
    if size <= 0:
        yield (0, n, text)
        return
    i = 0
    while i < n:
        j = min(n, i + size)
        yield (i, j, text[i:j])
        i = max(0, j - overlap)
        if i >= n:
            break

def _append_log(job_id: str, line: str):
    job = JOBS.get(job_id)
    if not job: return
    job["logs"].append(line)

def _set_status(job_id: str, status: str):
    job = JOBS.get(job_id)
    if not job: return
    job["status"] = status

# ---------- Background task ----------
def run_index_job(job_id: str, req: IndexRequest):
    try:
        _set_status(job_id, "running")
        total_chunks = 0
        LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
        _append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backend={EMB_BACKEND}")

        # warmup -> dimension
        warmup = []
        for f in req.files[:1]:
            warmup.append(next(_chunk_with_spans(f.text, req.chunk_size, req.overlap))[2])
        embs, sz = _post_embeddings(warmup)
        dim = embs.shape[1]
        col = f"proj_{req.project_id}"
        _ensure_collection(col, dim)
        _append_log(job_id, f"Collection ready: {col} (dim={dim})")

        point_id = 0

        # boucle fichiers
        for fi, f in enumerate(req.files, 1):
            chunks, metas = [], []
            for ci, (start, end, chunk_txt) in enumerate(_chunk_with_spans(f.text, req.chunk_size, req.overlap)):
                chunks.append(chunk_txt)
                payload = {"path": f.path, "chunk": ci, "start": start, "end": end}
                if req.store_text:
                    payload["text"] = chunk_txt
                metas.append(payload)

                if len(chunks) >= req.batch_size:
                    vecs, sz = _post_embeddings(chunks)
                    batch_points = []
                    for k, vec in enumerate(vecs):
                        batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
                        point_id += 1
                    qdr.upsert(collection_name=col, points=batch_points)
                    total_chunks += len(chunks)
                    _append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")
                    chunks, metas = [], []

            # flush fin de fichier
            if chunks:
                vecs, sz = _post_embeddings(chunks)
                batch_points = []
                for k, vec in enumerate(vecs):
                    batch_points.append(PointStruct(id=point_id, vector=vec.tolist(), payload=metas[k]))
                    point_id += 1
                qdr.upsert(collection_name=col, points=batch_points)
                total_chunks += len(chunks)
                _append_log(job_id, f"file {fi}/{len(req.files)}: +{len(chunks)} chunks (total={total_chunks}) ~{sz/1024:.1f}KiB")

        _append_log(job_id, f"Done. chunks={total_chunks}")
        _set_status(job_id, "done")
        LOG.info(f"[{job_id}] Index finished. chunks={total_chunks}")
    except Exception as e:
        LOG.exception("Index job failed")
        _append_log(job_id, f"ERROR: {e}")
        _set_status(job_id, "error")

# ---------- API ----------
app = FastAPI()

@app.get("/")
def root():
    return {
        "ok": True,
        "service": "remote-indexer",
        "backend": EMB_BACKEND,
        "hf_url": HF_URL if EMB_BACKEND == "hf" else None,
        "di_model": DI_MODEL if EMB_BACKEND == "deepinfra" else None,
        "docs": "/health, /index, /status/{job_id}, /query, /wipe"
    }

@app.get("/health")
def health():
    return {"ok": True}

def _check_backend_ready(for_query=False):
    if EMB_BACKEND == "hf" and not HF_TOKEN:
        raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
    if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
        raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")

@app.post("/index")
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
    if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
        raise HTTPException(401, "Unauthorized")
    _check_backend_ready()
    job_id = uuid.uuid4().hex[:12]
    JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
    background_tasks.add_task(run_index_job, job_id, req)
    return {"job_id": job_id}

@app.get("/status/{job_id}")
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
    if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
        raise HTTPException(401, "Unauthorized")
    j = JOBS.get(job_id)
    if not j:
        raise HTTPException(404, "job inconnu")
    return {"status": j["status"], "logs": j["logs"][-800:]}

@app.post("/query")
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
    if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
        raise HTTPException(401, "Unauthorized")
    _check_backend_ready(for_query=True)
    vec, _ = _post_embeddings([req.query])
    vec = vec[0].tolist()
    col = f"proj_{req.project_id}"
    try:
        res = qdr.search(collection_name=col, query_vector=vec, limit=int(req.top_k))
    except Exception as e:
        raise HTTPException(400, f"Search failed: {e}")
    out = []
    for p in res:
        pl = p.payload or {}
        txt = pl.get("text")
        if txt and len(txt) > 800:
            txt = txt[:800] + "..."
        out.append({"path": pl.get("path"), "chunk": pl.get("chunk"), "start": pl.get("start"), "end": pl.get("end"), "text": txt})
    return {"results": out}

@app.post("/wipe")
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
    if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
        raise HTTPException(401, "Unauthorized")
    col = f"proj_{project_id}"
    try:
        qdr.delete_collection(col)
        return {"ok": True}
    except Exception as e:
        raise HTTPException(400, f"wipe failed: {e}")

# ---------- Entrypoint ----------
if __name__ == "__main__":
    import uvicorn
    port = int(os.getenv("PORT", "7860"))
    LOG.info(f"===== Application Startup on PORT {port} =====")
    uvicorn.run(app, host="0.0.0.0", port=port)