Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -11,23 +11,37 @@ from qdrant_client import QdrantClient
|
|
| 11 |
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
| 12 |
|
| 13 |
# ---------- logging ----------
|
| 14 |
-
logging.basicConfig(
|
| 15 |
-
level=logging.INFO,
|
| 16 |
-
format="%(levelname)s:%(name)s:%(message)s"
|
| 17 |
-
)
|
| 18 |
LOG = logging.getLogger("remote_indexer")
|
| 19 |
|
| 20 |
# ---------- ENV ----------
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 23 |
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
| 26 |
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
|
| 27 |
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# ---------- Clients ----------
|
| 33 |
try:
|
|
@@ -61,24 +75,74 @@ def _auth(x_auth: Optional[str]):
|
|
| 61 |
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
|
| 62 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 63 |
|
| 64 |
-
def
|
| 65 |
if not HF_TOKEN:
|
| 66 |
-
raise RuntimeError("HF_API_TOKEN manquant (
|
| 67 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
arr = np.array(data, dtype=np.float32)
|
| 73 |
# [batch, dim] (sentence-transformers) ou [batch, tokens, dim] -> mean-pooling
|
| 74 |
if arr.ndim == 3:
|
| 75 |
arr = arr.mean(axis=1)
|
| 76 |
if arr.ndim != 2:
|
| 77 |
-
raise RuntimeError(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 79 |
arr = arr / norms
|
| 80 |
return arr.astype(np.float32), size
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def _ensure_collection(name: str, dim: int):
|
| 83 |
try:
|
| 84 |
qdr.get_collection(name)
|
|
@@ -119,9 +183,9 @@ def run_index_job(job_id: str, req: IndexRequest):
|
|
| 119 |
_set_status(job_id, "running")
|
| 120 |
total_chunks = 0
|
| 121 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 122 |
-
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)}")
|
| 123 |
|
| 124 |
-
# warmup
|
| 125 |
warmup = []
|
| 126 |
for f in req.files[:1]:
|
| 127 |
warmup.append(next(_chunk_with_spans(f.text, req.chunk_size, req.overlap))[2])
|
|
@@ -178,17 +242,30 @@ app = FastAPI()
|
|
| 178 |
|
| 179 |
@app.get("/")
|
| 180 |
def root():
|
| 181 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
@app.get("/health")
|
| 184 |
def health():
|
| 185 |
return {"ok": True}
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
@app.post("/index")
|
| 188 |
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
job_id = uuid.uuid4().hex[:12]
|
| 193 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 194 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
@@ -196,7 +273,8 @@ def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_tok
|
|
| 196 |
|
| 197 |
@app.get("/status/{job_id}")
|
| 198 |
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 199 |
-
|
|
|
|
| 200 |
j = JOBS.get(job_id)
|
| 201 |
if not j:
|
| 202 |
raise HTTPException(404, "job inconnu")
|
|
@@ -204,9 +282,9 @@ def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
|
| 204 |
|
| 205 |
@app.post("/query")
|
| 206 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
vec, _ = _post_embeddings([req.query])
|
| 211 |
vec = vec[0].tolist()
|
| 212 |
col = f"proj_{req.project_id}"
|
|
@@ -225,7 +303,8 @@ def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None))
|
|
| 225 |
|
| 226 |
@app.post("/wipe")
|
| 227 |
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 228 |
-
|
|
|
|
| 229 |
col = f"proj_{project_id}"
|
| 230 |
try:
|
| 231 |
qdr.delete_collection(col)
|
|
@@ -233,7 +312,7 @@ def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(defaul
|
|
| 233 |
except Exception as e:
|
| 234 |
raise HTTPException(400, f"wipe failed: {e}")
|
| 235 |
|
| 236 |
-
# ---------- Entrypoint
|
| 237 |
if __name__ == "__main__":
|
| 238 |
import uvicorn
|
| 239 |
port = int(os.getenv("PORT", "7860"))
|
|
|
|
| 11 |
from qdrant_client.http.models import VectorParams, Distance, PointStruct
|
| 12 |
|
| 13 |
# ---------- logging ----------
|
| 14 |
+
logging.basicConfig(level=logging.INFO, format="%(levelname)s:%(name)s:%(message)s")
|
|
|
|
|
|
|
|
|
|
| 15 |
LOG = logging.getLogger("remote_indexer")
|
| 16 |
|
| 17 |
# ---------- ENV ----------
|
| 18 |
+
EMB_BACKEND = os.getenv("EMB_BACKEND", "hf").strip().lower() # "hf" (défaut) ou "deepinfra"
|
| 19 |
+
|
| 20 |
+
# HF
|
| 21 |
HF_TOKEN = os.getenv("HF_API_TOKEN", "").strip()
|
| 22 |
HF_MODEL = os.getenv("HF_EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 23 |
+
# Si tu as un Inference Endpoint privé, ou si tu veux l’API "models/..." :
|
| 24 |
+
# ex: https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2
|
| 25 |
+
HF_URL = (os.getenv("HF_API_URL", "").strip()
|
| 26 |
+
or f"https://api-inference.huggingface.co/pipeline/feature-extraction/{HF_MODEL}")
|
| 27 |
+
|
| 28 |
+
# DeepInfra
|
| 29 |
+
DI_TOKEN = os.getenv("DEEPINFRA_API_KEY", "").strip()
|
| 30 |
+
DI_MODEL = os.getenv("DEEPINFRA_EMBED_MODEL", "thenlper/gte-small").strip()
|
| 31 |
+
DI_URL = os.getenv("DEEPINFRA_EMBED_URL", "https://api.deepinfra.com/v1/embeddings").strip()
|
| 32 |
|
| 33 |
+
# Qdrant
|
| 34 |
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
|
| 35 |
QDRANT_API = os.getenv("QDRANT_API_KEY", "").strip()
|
| 36 |
|
| 37 |
+
# Auth d’API du service (simple header)
|
| 38 |
+
AUTH_TOKEN = os.getenv("REMOTE_INDEX_TOKEN", "").strip()
|
| 39 |
+
|
| 40 |
+
LOG.info(f"Embeddings backend = {EMB_BACKEND}")
|
| 41 |
+
if EMB_BACKEND == "hf" and not HF_TOKEN:
|
| 42 |
+
LOG.warning("HF_API_TOKEN manquant — HF /index et /query échoueront.")
|
| 43 |
+
if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
|
| 44 |
+
LOG.warning("DEEPINFRA_API_KEY manquant — DeepInfra embeddings échoueront.")
|
| 45 |
|
| 46 |
# ---------- Clients ----------
|
| 47 |
try:
|
|
|
|
| 75 |
if AUTH_TOKEN and (x_auth or "") != AUTH_TOKEN:
|
| 76 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 77 |
|
| 78 |
+
def _hf_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 79 |
if not HF_TOKEN:
|
| 80 |
+
raise RuntimeError("HF_API_TOKEN manquant (backend=hf).")
|
| 81 |
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
| 82 |
+
try:
|
| 83 |
+
r = requests.post(HF_URL, headers=headers, json=batch, timeout=120)
|
| 84 |
+
size = int(r.headers.get("Content-Length", "0"))
|
| 85 |
+
if r.status_code >= 400:
|
| 86 |
+
# Log détaillé pour comprendre le 403/4xx
|
| 87 |
+
try:
|
| 88 |
+
LOG.error(f"HF error {r.status_code}: {r.text}")
|
| 89 |
+
except Exception:
|
| 90 |
+
LOG.error(f"HF error {r.status_code} (no body)")
|
| 91 |
+
r.raise_for_status()
|
| 92 |
+
data = r.json()
|
| 93 |
+
except Exception as e:
|
| 94 |
+
raise RuntimeError(f"HF POST failed: {e}")
|
| 95 |
+
|
| 96 |
arr = np.array(data, dtype=np.float32)
|
| 97 |
# [batch, dim] (sentence-transformers) ou [batch, tokens, dim] -> mean-pooling
|
| 98 |
if arr.ndim == 3:
|
| 99 |
arr = arr.mean(axis=1)
|
| 100 |
if arr.ndim != 2:
|
| 101 |
+
raise RuntimeError(f"HF: unexpected embeddings shape: {arr.shape}")
|
| 102 |
+
# normalisation
|
| 103 |
+
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 104 |
+
arr = arr / norms
|
| 105 |
+
return arr.astype(np.float32), size
|
| 106 |
+
|
| 107 |
+
def _di_post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 108 |
+
if not DI_TOKEN:
|
| 109 |
+
raise RuntimeError("DEEPINFRA_API_KEY manquant (backend=deepinfra).")
|
| 110 |
+
headers = {"Authorization": f"Bearer {DI_TOKEN}", "Content-Type": "application/json"}
|
| 111 |
+
payload = {"model": DI_MODEL, "input": batch}
|
| 112 |
+
try:
|
| 113 |
+
r = requests.post(DI_URL, headers=headers, json=payload, timeout=120)
|
| 114 |
+
size = int(r.headers.get("Content-Length", "0"))
|
| 115 |
+
if r.status_code >= 400:
|
| 116 |
+
try:
|
| 117 |
+
LOG.error(f"DeepInfra error {r.status_code}: {r.text}")
|
| 118 |
+
except Exception:
|
| 119 |
+
LOG.error(f"DeepInfra error {r.status_code} (no body)")
|
| 120 |
+
r.raise_for_status()
|
| 121 |
+
js = r.json()
|
| 122 |
+
except Exception as e:
|
| 123 |
+
raise RuntimeError(f"DeepInfra POST failed: {e}")
|
| 124 |
+
|
| 125 |
+
# OpenAI-like : {"data":[{"embedding":[...],"index":0}, ...]}
|
| 126 |
+
data = js.get("data")
|
| 127 |
+
if not isinstance(data, list) or not data:
|
| 128 |
+
raise RuntimeError(f"DeepInfra embeddings: réponse invalide {js}")
|
| 129 |
+
embs = [d.get("embedding") for d in data]
|
| 130 |
+
arr = np.asarray(embs, dtype=np.float32)
|
| 131 |
+
if arr.ndim != 2:
|
| 132 |
+
raise RuntimeError(f"DeepInfra: unexpected embeddings shape: {arr.shape}")
|
| 133 |
+
# normalisation
|
| 134 |
norms = np.linalg.norm(arr, axis=1, keepdims=True) + 1e-12
|
| 135 |
arr = arr / norms
|
| 136 |
return arr.astype(np.float32), size
|
| 137 |
|
| 138 |
+
def _post_embeddings(batch: List[str]) -> Tuple[np.ndarray, int]:
|
| 139 |
+
if EMB_BACKEND == "hf":
|
| 140 |
+
return _hf_post_embeddings(batch)
|
| 141 |
+
elif EMB_BACKEND == "deepinfra":
|
| 142 |
+
return _di_post_embeddings(batch)
|
| 143 |
+
else:
|
| 144 |
+
raise RuntimeError(f"EMB_BACKEND inconnu: {EMB_BACKEND}")
|
| 145 |
+
|
| 146 |
def _ensure_collection(name: str, dim: int):
|
| 147 |
try:
|
| 148 |
qdr.get_collection(name)
|
|
|
|
| 183 |
_set_status(job_id, "running")
|
| 184 |
total_chunks = 0
|
| 185 |
LOG.info(f"[{job_id}] Index start project={req.project_id} files={len(req.files)}")
|
| 186 |
+
_append_log(job_id, f"Start project={req.project_id} files={len(req.files)} | backend={EMB_BACKEND}")
|
| 187 |
|
| 188 |
+
# warmup -> dimension
|
| 189 |
warmup = []
|
| 190 |
for f in req.files[:1]:
|
| 191 |
warmup.append(next(_chunk_with_spans(f.text, req.chunk_size, req.overlap))[2])
|
|
|
|
| 242 |
|
| 243 |
@app.get("/")
|
| 244 |
def root():
|
| 245 |
+
return {
|
| 246 |
+
"ok": True,
|
| 247 |
+
"service": "remote-indexer",
|
| 248 |
+
"backend": EMB_BACKEND,
|
| 249 |
+
"hf_url": HF_URL if EMB_BACKEND == "hf" else None,
|
| 250 |
+
"di_model": DI_MODEL if EMB_BACKEND == "deepinfra" else None,
|
| 251 |
+
"docs": "/health, /index, /status/{job_id}, /query, /wipe"
|
| 252 |
+
}
|
| 253 |
|
| 254 |
@app.get("/health")
|
| 255 |
def health():
|
| 256 |
return {"ok": True}
|
| 257 |
|
| 258 |
+
def _check_backend_ready(for_query=False):
|
| 259 |
+
if EMB_BACKEND == "hf" and not HF_TOKEN:
|
| 260 |
+
raise HTTPException(400, "HF_API_TOKEN manquant côté serveur (backend=hf).")
|
| 261 |
+
if EMB_BACKEND == "deepinfra" and not DI_TOKEN:
|
| 262 |
+
raise HTTPException(400, "DEEPINFRA_API_KEY manquant côté serveur (backend=deepinfra).")
|
| 263 |
+
|
| 264 |
@app.post("/index")
|
| 265 |
def start_index(req: IndexRequest, background_tasks: BackgroundTasks, x_auth_token: Optional[str] = Header(default=None)):
|
| 266 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 267 |
+
raise HTTPException(401, "Unauthorized")
|
| 268 |
+
_check_backend_ready()
|
| 269 |
job_id = uuid.uuid4().hex[:12]
|
| 270 |
JOBS[job_id] = {"status": "queued", "logs": [], "created": time.time()}
|
| 271 |
background_tasks.add_task(run_index_job, job_id, req)
|
|
|
|
| 273 |
|
| 274 |
@app.get("/status/{job_id}")
|
| 275 |
def status(job_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 276 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 277 |
+
raise HTTPException(401, "Unauthorized")
|
| 278 |
j = JOBS.get(job_id)
|
| 279 |
if not j:
|
| 280 |
raise HTTPException(404, "job inconnu")
|
|
|
|
| 282 |
|
| 283 |
@app.post("/query")
|
| 284 |
def query(req: QueryRequest, x_auth_token: Optional[str] = Header(default=None)):
|
| 285 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 286 |
+
raise HTTPException(401, "Unauthorized")
|
| 287 |
+
_check_backend_ready(for_query=True)
|
| 288 |
vec, _ = _post_embeddings([req.query])
|
| 289 |
vec = vec[0].tolist()
|
| 290 |
col = f"proj_{req.project_id}"
|
|
|
|
| 303 |
|
| 304 |
@app.post("/wipe")
|
| 305 |
def wipe_collection(project_id: str, x_auth_token: Optional[str] = Header(default=None)):
|
| 306 |
+
if AUTH_TOKEN and (x_auth_token or "") != AUTH_TOKEN:
|
| 307 |
+
raise HTTPException(401, "Unauthorized")
|
| 308 |
col = f"proj_{project_id}"
|
| 309 |
try:
|
| 310 |
qdr.delete_collection(col)
|
|
|
|
| 312 |
except Exception as e:
|
| 313 |
raise HTTPException(400, f"wipe failed: {e}")
|
| 314 |
|
| 315 |
+
# ---------- Entrypoint ----------
|
| 316 |
if __name__ == "__main__":
|
| 317 |
import uvicorn
|
| 318 |
port = int(os.getenv("PORT", "7860"))
|