File size: 4,401 Bytes
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b7e94
 
 
32b2aaa
 
 
 
 
 
d2b7e94
 
 
 
 
32b2aaa
 
 
 
d2b7e94
 
 
 
32b2aaa
 
 
d2b7e94
 
 
 
 
32b2aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch.nn.functional as F
from torch import nn


class PreactResBlock(nn.Sequential):
    def __init__(self, dim):
        super().__init__(
            nn.GroupNorm(dim // 16, dim),
            nn.GELU(),
            nn.Conv2d(dim, dim, 3, padding=1),
            nn.GroupNorm(dim // 16, dim),
            nn.GELU(),
            nn.Conv2d(dim, dim, 3, padding=1),
        )

    def forward(self, x):
        return x + super().forward(x)


class UNetBlock(nn.Module):
    def __init__(self, input_dim, output_dim=None, scale_factor=1.0):
        super().__init__()
        if output_dim is None:
            output_dim = input_dim
        self.pre_conv = nn.Conv2d(input_dim, output_dim, 3, padding=1)
        self.res_block1 = PreactResBlock(output_dim)
        self.res_block2 = PreactResBlock(output_dim)
        self.downsample = self.upsample = nn.Identity()
        if scale_factor > 1:
            self.upsample = nn.Upsample(scale_factor=scale_factor)
        elif scale_factor < 1:
            self.downsample = nn.Upsample(scale_factor=scale_factor)

    def forward(self, x, h=None):
        """
        Args:
            x: (b c h w), last output
            h: (b c h w), skip output
        Returns:
            o: (b c h w), output
            s: (b c h w), skip output
        """
        x = self.upsample(x)
        if h is not None:
            assert x.shape == h.shape, f"{x.shape} != {h.shape}"
            x = x + h
        x = self.pre_conv(x)
        x = self.res_block1(x)
        x = self.res_block2(x)
        return self.downsample(x), x


class UNet(nn.Module):
    def __init__(
        self, input_dim, output_dim, hidden_dim=16, num_blocks=4, num_middle_blocks=2
    ):
        super().__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.input_proj = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
        self.encoder_blocks = nn.ModuleList(
            [
                UNetBlock(
                    input_dim=hidden_dim * 2**i,
                    output_dim=hidden_dim * 2 ** (i + 1),
                    scale_factor=0.5,
                )
                for i in range(num_blocks)
            ]
        )
        self.middle_blocks = nn.ModuleList(
            [
                UNetBlock(input_dim=hidden_dim * 2**num_blocks)
                for _ in range(num_middle_blocks)
            ]
        )
        self.decoder_blocks = nn.ModuleList(
            [
                UNetBlock(
                    input_dim=hidden_dim * 2 ** (i + 1),
                    output_dim=hidden_dim * 2**i,
                    scale_factor=2,
                )
                for i in reversed(range(num_blocks))
            ]
        )
        self.head = nn.Sequential(
            nn.Conv2d(hidden_dim, hidden_dim, 3, padding=1),
            nn.GELU(),
            nn.Conv2d(hidden_dim, output_dim, 1),
        )

    @property
    def scale_factor(self):
        return 2 ** len(self.encoder_blocks)

    def pad_to_fit(self, x):
        """
        Args:
            x: (b c h w), input
        Returns:
            x: (b c h' w'), padded input
        """
        hpad = (self.scale_factor - x.shape[2] % self.scale_factor) % self.scale_factor
        wpad = (self.scale_factor - x.shape[3] % self.scale_factor) % self.scale_factor
        return F.pad(x, (0, wpad, 0, hpad))

    def forward(self, x):
        """
        Args:
            x: (b c h w), input
        Returns:
            o: (b c h w), output
        """
        shape = x.shape

        x = self.pad_to_fit(x)
        x = self.input_proj(x)

        s_list = []
        for block in self.encoder_blocks:
            x, s = block(x)
            s_list.append(s)

        for block in self.middle_blocks:
            x, _ = block(x)

        for block, s in zip(self.decoder_blocks, reversed(s_list)):
            x, _ = block(x, s)

        x = self.head(x)
        x = x[..., : shape[2], : shape[3]]

        return x

    def test(self, shape=(3, 512, 256)):
        import ptflops

        macs, params = ptflops.get_model_complexity_info(
            self,
            shape,
            as_strings=True,
            print_per_layer_stat=True,
            verbose=True,
        )

        print(f"macs: {macs}")
        print(f"params: {params}")


def main():
    model = UNet(3, 3)
    model.test()


if __name__ == "__main__":
    main()