File size: 5,846 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest

from transformers import WhisperTokenizer, is_speech_available
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio

from .test_feature_extraction_whisper import floats_list


if is_speech_available():
    from transformers import WhisperFeatureExtractor, WhisperProcessor


TRANSCRIBE = 50358
NOTIMESTAMPS = 50362


@require_torch
@require_torchaudio
@require_sentencepiece
class WhisperProcessorTest(unittest.TestCase):
    def setUp(self):
        self.checkpoint = "openai/whisper-small.en"
        self.tmpdirname = tempfile.mkdtemp()

    def get_tokenizer(self, **kwargs):
        return WhisperTokenizer.from_pretrained(self.checkpoint, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return WhisperFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = WhisperProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, WhisperTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = WhisperProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, WhisperTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "This is a test string"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        self.assertListEqual(
            processor.model_input_names,
            feature_extractor.model_input_names,
            msg="`processor` and `feature_extractor` model input names do not match",
        )

    def test_get_decoder_prompt_ids(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
        forced_decoder_ids = processor.get_decoder_prompt_ids(task="transcribe", no_timestamps=True)

        self.assertIsInstance(forced_decoder_ids, list)
        for ids in forced_decoder_ids:
            self.assertIsInstance(ids, (list, tuple))

        expected_ids = [TRANSCRIBE, NOTIMESTAMPS]
        self.assertListEqual([ids[-1] for ids in forced_decoder_ids], expected_ids)