File size: 12,882 Bytes
455a40f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, pipeline
from transformers.testing_utils import (
    is_pipeline_test,
    require_accelerate,
    require_tf,
    require_torch,
    require_torch_gpu,
    require_torch_or_tf,
)

from .test_pipelines_common import ANY


@is_pipeline_test
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase):
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING

    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
                }
            ],
        )

        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
                    }
                ],
                [
                    {
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
                    }
                ],
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")

        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
                }
            ],
        )

        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
                    }
                ],
                [
                    {
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
                    }
                ],
            ],
        )

    def get_test_pipeline(self, model, tokenizer, processor):
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
        return text_generator, ["This is a test", "Another test"]

    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

        outputs = text_generator("This is a test")
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))

        outputs = text_generator("This is a test", return_full_text=False)
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
        outputs = text_generator("This is a test")
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))

        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)

        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
        if tokenizer.model_max_length < 10000 and "XGLM" not in tokenizer.__class__.__name__:
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
        self.assertEqual(pipe.model.device, torch.device(0))
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

    @require_torch
    @require_torch_gpu
    def test_small_model_fp16(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device=0, torch_dtype=torch.float16)
        pipe("This is a test")

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)