Spaces:
Runtime error
Runtime error
File size: 25,124 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
BeamHypotheses,
BeamSearchScorer,
ConstrainedBeamSearchScorer,
DisjunctiveConstraint,
PhrasalConstraint,
)
class BeamSearchTester:
def __init__(
self,
parent,
batch_size=3,
sequence_length=10,
vocab_size=99,
pad_token_id=0,
max_length=20,
num_beams=4,
length_penalty=2.0,
do_early_stopping=True,
num_beam_hyps_to_keep=2,
):
self.parent = parent
self.batch_size = batch_size
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.pad_token_id = pad_token_id
self.max_length = max_length
self.num_beams = num_beams
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
# cannot be randomly generated
self.eos_token_id = vocab_size + 1
def prepare_beam_scorer(self, **kwargs):
return BeamSearchScorer(
batch_size=kwargs.get("batch_size", self.batch_size),
num_beams=kwargs.get("num_beams", self.num_beams),
device=torch_device,
length_penalty=kwargs.get("length_penalty", self.length_penalty),
do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
)
def prepare_inputs(self):
input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
return (input_ids, next_tokens, next_indices, next_scores)
def check_beam_hypotheses(self, input_ids, *args):
# check that correct number of beam hypotheses is set in beam scorer
beam_scorer = self.prepare_beam_scorer(do_early_stopping=True)
beam_hyp = beam_scorer._beam_hyps[0]
self.parent.assertEqual(len(beam_scorer._beam_hyps), self.batch_size)
# check correct type
self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))
# check that num_beams is correctly set
self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)
# check for early stopping deactivated
for beam_idx in range(self.num_beams):
beam_hyp.add(input_ids[beam_idx], -10.0)
# if early stopping True -> score does not matter
self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))
# re-init
beam_scorer = self.prepare_beam_scorer(do_early_stopping=False)
beam_hyp = beam_scorer._beam_hyps[0]
# add `num_beams + 1` beams to change `worst_score`
for beam_idx in range(self.num_beams + 1):
beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))
# -10.0 is removed => -9.0 is worst score
self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
# -5.0 is better than worst score => should not be finished
self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))
# -20.0 is worse than worst score => should be finished
self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))
def check_beam_scorer_update(self, input_ids, next_tokens, next_indices, next_scores):
# check too many eos tokens
beam_scorer = self.prepare_beam_scorer()
tokens = next_tokens.clone()
tokens[0, :] = self.eos_token_id
with self.parent.assertRaises(ValueError):
beam_scorer.process(input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id)
# check all batches are done
beam_scorer = self.prepare_beam_scorer()
tokens = next_tokens.clone()
tokens[:, : self.num_beams] = self.eos_token_id
beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
beam_indices = tuple(tuple(b) for b in beam_indices)
beam_scorer.process(
input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
)
# beam scorer should be done
self.parent.assertTrue(beam_scorer.is_done)
# check
beam_scorer = self.prepare_beam_scorer()
tokens = next_tokens.clone()
tokens[:, 1] = self.eos_token_id
beam_outputs = beam_scorer.process(
input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id, beam_indices=beam_indices
)
output_scores = beam_outputs["next_beam_scores"]
output_tokens = beam_outputs["next_beam_tokens"]
output_indices = beam_outputs["next_beam_indices"]
def cut_expected_tensor(tensor):
return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()
# check all outptus
# cut out id of eos token and take best `num_beams` outputs
expected_output_tokens = cut_expected_tensor(tokens)
expected_output_scores = cut_expected_tensor(next_scores)
# add num_beams * batch_idx
offset = torch.div(
torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor"
)
expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))
# make sure ids of eos token are correctly saved in beam_hyps of beam scorer
expected_beam_indices = list(range(10))
for batch_idx in range(self.batch_size):
correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
self.parent.assertListEqual(
input_ids[correct_idx].tolist(), beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
)
self.parent.assertListEqual(
expected_beam_indices + [correct_idx],
torch.tensor(beam_scorer._beam_hyps[batch_idx].beams[0][2]).tolist(),
)
def check_beam_scores_finalize(self, input_ids, next_tokens, next_indices, next_scores):
# max_length should be only one more than current input_ids to check that eos is correctly appended
max_length = self.sequence_length + 1
beam_scorer = self.prepare_beam_scorer(num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False)
# update beams and append to input_ids
tokens = next_tokens.clone()
# first batch, first output has to finish with eos token id since scores are correctly sorted
tokens[0, 0] = self.eos_token_id
# make sure corresponding score is as good as possible to surely be picked first
next_scores[0, 0] = 0.0
beam_outputs = beam_scorer.process(
input_ids, next_scores, tokens, next_indices, eos_token_id=self.eos_token_id
)
output_scores = beam_outputs["next_beam_scores"]
output_tokens = beam_outputs["next_beam_tokens"]
output_indices = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)
# finalize
beam_indices = torch.zeros_like(input_ids) + torch.arange(input_ids.shape[-1], device=input_ids.device)
beam_indices = tuple(tuple(b) for b in beam_indices)
sequence_output = beam_scorer.finalize(
input_ids,
output_scores,
output_tokens,
output_indices,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
max_length=max_length,
beam_indices=beam_indices,
)
sequences = sequence_output["sequences"]
sequence_scores = sequence_output["sequence_scores"]
# since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])
# check sequence_scores
self.parent.assertFalse((sequence_scores > 0).any().item())
# first batch has to finish with eos_token
self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)
# other batches cannot finish with eos token
self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)
# now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned
beam_scorer.num_beam_hyps_to_keep = self.num_beams
sequence_output = beam_scorer.finalize(
input_ids,
output_scores,
output_tokens,
output_indices,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
max_length=max_length,
beam_indices=beam_indices,
)
sequences = sequence_output["sequences"]
sequence_scores = sequence_output["sequence_scores"]
self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])
class ConstrainedBeamSearchTester:
def __init__(
self,
parent,
constraints=None,
batch_size=3,
sequence_length=10,
vocab_size=99,
pad_token_id=0,
max_length=20,
num_beams=4,
length_penalty=2.0,
do_early_stopping=True,
num_beam_hyps_to_keep=2,
):
self.parent = parent
self.batch_size = batch_size
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.pad_token_id = pad_token_id
self.max_length = max_length
self.num_beams = num_beams
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
if constraints is None:
force_tokens = torch.randint(10, 50, (1, 2))[0].tolist()
disjunctive_tokens = torch.randint(10, 50, (2, 2)).tolist()
constraints = [PhrasalConstraint(force_tokens), DisjunctiveConstraint(disjunctive_tokens)]
self.constraints = constraints
# cannot be randomly generated
self.eos_token_id = vocab_size + 1
def prepare_constrained_beam_scorer(self, **kwargs):
return ConstrainedBeamSearchScorer(
constraints=kwargs.get("constraints", self.constraints),
batch_size=kwargs.get("batch_size", self.batch_size),
num_beams=kwargs.get("num_beams", self.num_beams),
device=torch_device,
length_penalty=kwargs.get("length_penalty", self.length_penalty),
do_early_stopping=kwargs.get("do_early_stopping", self.do_early_stopping),
num_beam_hyps_to_keep=kwargs.get("num_beam_hyps_to_keep", self.num_beam_hyps_to_keep),
)
def prepare_inputs(self):
input_ids = ids_tensor((self.batch_size * self.num_beams, self.sequence_length), self.vocab_size)
next_tokens = ids_tensor((self.batch_size, 2 * self.num_beams), self.vocab_size).to(torch_device)
next_indices = ids_tensor((self.batch_size, 2 * self.num_beams), self.num_beams).to(torch_device)
next_scores, _ = (-floats_tensor((self.batch_size, 2 * self.num_beams)).to(torch_device)).sort(descending=True)
scores_for_all_vocab, _ = (
-floats_tensor((self.batch_size * self.num_beams, self.vocab_size)).to(torch_device)
).sort(descending=True)
return (input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab)
def check_beam_hypotheses(self, input_ids, *args):
# check that correct number of beam hypotheses is set in beam scorer
constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=True)
beam_hyp = constrained_beam_scorer._beam_hyps[0]
self.parent.assertEqual(len(constrained_beam_scorer._beam_hyps), self.batch_size)
# check correct type
self.parent.assertTrue(isinstance(beam_hyp, BeamHypotheses))
# check that num_beams is correctly set
self.parent.assertEqual(beam_hyp.num_beams, self.num_beams)
# check for early stopping deactivated
for beam_idx in range(self.num_beams):
beam_hyp.add(input_ids[beam_idx], -10.0)
# if early stopping True -> score does not matter
self.parent.assertTrue(beam_hyp.is_done(-10.0, 5))
# re-init
constrained_beam_scorer = self.prepare_constrained_beam_scorer(do_early_stopping=False)
beam_hyp = constrained_beam_scorer._beam_hyps[0]
# add `num_beams + 1` beams to change `worst_score`
for beam_idx in range(self.num_beams + 1):
beam_hyp.add(input_ids[beam_idx], -10.0 + float(beam_idx))
# -10.0 is removed => -9.0 is worst score
self.parent.assertAlmostEqual(beam_hyp.worst_score, -9.0 / (self.sequence_length**beam_hyp.length_penalty))
# -5.0 is better than worst score => should not be finished
self.parent.assertFalse(beam_hyp.is_done(-5.0, self.sequence_length))
# -20.0 is worse than worst score => should be finished
self.parent.assertTrue(beam_hyp.is_done(-20.0, self.sequence_length))
def check_constrained_beam_scorer_update(
self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
):
# check too many eos tokens
constrained_beam_scorer = self.prepare_constrained_beam_scorer()
stacked_token_ids = []
for constraint in self.constraints:
token_ids = constraint.token_ids
token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
stacked_token_ids = stacked_token_ids + token_ids
fulfilling_sequence = torch.LongTensor(stacked_token_ids)
fulfill_len = fulfilling_sequence.size(0)
input_ids[:, :fulfill_len] = fulfilling_sequence
tokens = next_tokens.clone()
tokens[0, :] = self.eos_token_id
with self.parent.assertRaises(ValueError):
constrained_beam_scorer.process(
input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
)
# check all batches are done
constrained_beam_scorer = self.prepare_constrained_beam_scorer()
tokens = next_tokens.clone()
tokens[:, : self.num_beams] = self.eos_token_id
constrained_beam_scorer.process(
input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
)
# beam scorer should be done
self.parent.assertTrue(constrained_beam_scorer.is_done)
# check
constrained_beam_scorer = self.prepare_constrained_beam_scorer()
tokens = next_tokens.clone()
tokens[:, 1] = self.eos_token_id
beam_outputs = constrained_beam_scorer.process(
input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
)
output_scores = beam_outputs["next_beam_scores"]
output_tokens = beam_outputs["next_beam_tokens"]
output_indices = beam_outputs["next_beam_indices"]
def cut_expected_tensor(tensor):
return torch.cat([tensor[:, :1], tensor[:, 2 : self.num_beams + 1]], dim=1).flatten()
# check all outptus
# cut out id of eos token and take best `num_beams` outputs
expected_output_tokens = cut_expected_tensor(tokens)
expected_output_scores = cut_expected_tensor(next_scores)
# add num_beams * batch_idx
offset = torch.div(
torch.arange(self.num_beams * self.batch_size, device=torch_device), self.num_beams, rounding_mode="floor"
)
expected_output_indices = cut_expected_tensor(next_indices) + offset * self.num_beams
self.parent.assertListEqual(expected_output_tokens.tolist(), output_tokens.tolist())
self.parent.assertListEqual(expected_output_indices.tolist(), output_indices.tolist())
self.parent.assertTrue(torch.allclose(expected_output_scores, output_scores, atol=1e-3))
# make sure ids of eos token are correctly saved in beam_hyps of beam scorer
for batch_idx in range(self.batch_size):
correct_idx = batch_idx * self.num_beams + next_indices[batch_idx, 1]
self.parent.assertListEqual(
input_ids[correct_idx].tolist(), constrained_beam_scorer._beam_hyps[batch_idx].beams[0][1].tolist()
)
def check_constrained_beam_scorer_finalize(
self, input_ids, next_tokens, next_indices, next_scores, scores_for_all_vocab
):
# max_length should be only one more than current input_ids to check that eos is correctly appended
max_length = self.sequence_length + 1
# for testing finalize, we do want to have fulfilled constraints
stacked_token_ids = []
for constraint in self.constraints:
token_ids = constraint.token_ids
token_ids = token_ids[0] if isinstance(token_ids[0], list) else token_ids
stacked_token_ids = stacked_token_ids + token_ids
fulfilling_sequence = torch.LongTensor(stacked_token_ids)
fulfill_len = fulfilling_sequence.size(0)
input_ids[:, :fulfill_len] = fulfilling_sequence
constrained_beam_scorer = self.prepare_constrained_beam_scorer(
num_beam_hyps_to_keep=1, length_penalty=1.0, do_early_stopping=False
)
constraints = constrained_beam_scorer.constraints
# update beams and append to input_ids
tokens = next_tokens.clone()
# first batch, first output has to finish with eos token id since scores are correctly sorted
tokens[0, 0] = self.eos_token_id
# make sure corresponding score is as good as possible to surely be picked first
next_scores[0, 0] = 0.0
beam_outputs = constrained_beam_scorer.process(
input_ids, next_scores, tokens, next_indices, scores_for_all_vocab, eos_token_id=self.eos_token_id
)
output_scores = beam_outputs["next_beam_scores"]
output_tokens = beam_outputs["next_beam_tokens"]
output_indices = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[output_indices, :], output_tokens.unsqueeze(-1)], dim=-1)
# finalize
sequence_output = constrained_beam_scorer.finalize(
input_ids,
output_scores,
output_tokens,
output_indices,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
max_length=max_length,
)
sequences = sequence_output["sequences"]
sequence_scores = sequence_output["sequence_scores"]
# since `num_beam_hyps_to_keep` = 1 => only return `batch_size` x `max_length`
self.parent.assertListEqual(list(sequences.shape), [self.batch_size, max_length])
self.parent.assertListEqual(list(sequence_scores.shape), [self.batch_size])
# check sequence_scores
self.parent.assertFalse((sequence_scores > 0).any().item())
# first batch has to finish with eos_token
self.parent.assertEqual(sequences[0, -1].item(), self.eos_token_id)
# other batches cannot finish with eos token
self.parent.assertNotEqual(sequences[1, -1].item(), self.eos_token_id)
self.parent.assertNotEqual(sequences[2, -1].item(), self.eos_token_id)
# test that the constraint is indeed fulfilled
for output, constraint in [(s, c) for s in sequences for c in constraints]:
forced_token_ids = constraint.token_ids
if isinstance(forced_token_ids[0], list):
# disjunctive case
flag = False
for token_ids in forced_token_ids:
if self._check_sequence_inside_sequence(output, token_ids):
flag = True
break
self.parent.assertEqual(flag, True)
else:
self.parent.assertEqual(self._check_sequence_inside_sequence(output, forced_token_ids), True)
# now test that if `num_beam_hyps_to_keep` is 3 => all beams are returned
# constrained_beam_scorer.num_beam_hyps_to_keep = self.num_beams
constrained_beam_scorer = self.prepare_constrained_beam_scorer(
num_beam_hyps_to_keep=self.num_beams, length_penalty=1.0, do_early_stopping=False
)
sequence_output = constrained_beam_scorer.finalize(
input_ids,
output_scores,
output_tokens,
output_indices,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
max_length=max_length,
)
sequences = sequence_output["sequences"]
sequence_scores = sequence_output["sequence_scores"]
self.parent.assertListEqual(list(sequences.shape), [self.num_beams * self.batch_size, max_length])
self.parent.assertListEqual(list(sequence_scores.shape), [self.num_beams * self.batch_size])
def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
# check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
# set to same device. we don't care what device.
if not isinstance(tensor_1, list):
tensor_1 = tensor_1.cpu().tolist()
if not isinstance(tensor_2, list):
tensor_2 = tensor_2.cpu().tolist()
in_order = len(tensor_1) <= len(tensor_2)
longer = tensor_2 if in_order else tensor_1
shorter = tensor_1 if in_order else tensor_2
flag = False
chunk_size = len(shorter)
for chunk_idx in range(len(longer) - chunk_size + 1):
subseq = longer[chunk_idx : chunk_idx + chunk_size]
if subseq == shorter:
flag = True
break
return flag
@require_torch
class BeamSearchTest(unittest.TestCase):
def setUp(self):
self.beam_search_tester = BeamSearchTester(self)
def test_beam_hypotheses(self):
inputs = self.beam_search_tester.prepare_inputs()
self.beam_search_tester.check_beam_hypotheses(*inputs)
def test_beam_scorer_update(self):
inputs = self.beam_search_tester.prepare_inputs()
self.beam_search_tester.check_beam_scorer_update(*inputs)
def test_beam_scorer_finalize(self):
inputs = self.beam_search_tester.prepare_inputs()
self.beam_search_tester.check_beam_scores_finalize(*inputs)
@require_torch
class ConstrainedBeamSearchTest(unittest.TestCase):
def setUp(self):
self.constrained_beam_search_tester = ConstrainedBeamSearchTester(self)
def test_constrained_beam_hypotheses(self):
inputs = self.constrained_beam_search_tester.prepare_inputs()
self.constrained_beam_search_tester.check_beam_hypotheses(*inputs)
def test_constrained_beam_scorer_update(self):
inputs = self.constrained_beam_search_tester.prepare_inputs()
self.constrained_beam_search_tester.check_constrained_beam_scorer_update(*inputs)
def test_constrained_beam_scorer_finalize(self):
inputs = self.constrained_beam_search_tester.prepare_inputs()
self.constrained_beam_search_tester.check_constrained_beam_scorer_finalize(*inputs)
|