Spaces:
Runtime error
Runtime error
File size: 4,419 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class SummarizationDataProcessingTest(unittest.TestCase):
def setUp(self):
self.block_size = 10
def test_fit_to_block_sequence_too_small(self):
"""Pad the sequence with 0 if the sequence is smaller than the block size."""
sequence = [1, 2, 3, 4]
expected_output = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_fit_exactly(self):
"""Do nothing if the sequence is the right size."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_too_big(self):
"""Truncate the sequence if it is too long."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_process_story_no_highlights(self):
"""Processing a story with no highlights returns an empty list for the summary."""
raw_story = """It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this."""
_, summary_lines = process_story(raw_story)
self.assertEqual(summary_lines, [])
def test_process_empty_story(self):
"""An empty story returns an empty collection of lines."""
raw_story = ""
story_lines, summary_lines = process_story(raw_story)
self.assertEqual(story_lines, [])
self.assertEqual(summary_lines, [])
def test_process_story_with_missing_period(self):
raw_story = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
story_lines, summary_lines = process_story(raw_story)
expected_story_lines = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(expected_story_lines, story_lines)
expected_summary_lines = ["It was the best of times."]
self.assertEqual(expected_summary_lines, summary_lines)
def test_build_mask_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(sequence, 0).numpy(), expected.numpy())
def test_build_mask(self):
sequence = torch.tensor([1, 2, 3, 4, 23, 23, 23])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 23).numpy(), expected.numpy())
def test_build_mask_with_padding_equal_to_one(self):
sequence = torch.tensor([8, 2, 3, 4, 1, 1, 1])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 1).numpy(), expected.numpy())
def test_compute_token_type_ids(self):
separator = 101
batch = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
expected = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
result = compute_token_type_ids(batch, separator)
np.testing.assert_array_equal(result, expected)
|