Spaces:
Runtime error
Runtime error
File size: 13,150 Bytes
455a40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Debugging
## Multi-GPU Network Issues Debug
When training or inferencing with `DistributedDataParallel` and multiple GPU, if you run into issue of inter-communication between processes and/or nodes, you can use the following script to diagnose network issues.
```bash
wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py
```
For example to test how 2 GPUs interact do:
```bash
python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
If both processes can talk to each and allocate GPU memory each will print an OK status.
For more GPUs or nodes adjust the arguments in the script.
You will find a lot more details inside the diagnostics script and even a recipe to how you could run it in a SLURM environment.
An additional level of debug is to add `NCCL_DEBUG=INFO` environment variable as follows:
```bash
NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
This will dump a lot of NCCL-related debug information, which you can then search online if you find that some problems are reported. Or if you're not sure how to interpret the output you can share the log file in an Issue.
## Underflow and Overflow Detection
<Tip>
This feature is currently available for PyTorch-only.
</Tip>
<Tip>
For multi-GPU training it requires DDP (`torch.distributed.launch`).
</Tip>
<Tip>
This feature can be used with any `nn.Module`-based model.
</Tip>
If you start getting `loss=NaN` or the model inhibits some other abnormal behavior due to `inf` or `nan` in
activations or weights one needs to discover where the first underflow or overflow happens and what led to it. Luckily
you can accomplish that easily by activating a special module that will do the detection automatically.
If you're using [`Trainer`], you just need to add:
```bash
--debug underflow_overflow
```
to the normal command line arguments, or pass `debug="underflow_overflow"` when creating the
[`TrainingArguments`] object.
If you're using your own training loop or another Trainer you can accomplish the same with:
```python
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
[`~debug_utils.DebugUnderflowOverflow`] inserts hooks into the model that immediately after each
forward call will test input and output variables and also the corresponding module's weights. As soon as `inf` or
`nan` is detected in at least one element of the activations or weights, the program will assert and print a report
like this (this was caught with `google/mt5-small` under fp16 mixed precision):
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
encoder.block.1.layer.1.DenseReluDense.dropout Dropout
0.00e+00 2.57e+02 input[0]
0.00e+00 2.85e+02 output
[...]
encoder.block.2.layer.0 T5LayerSelfAttention
6.78e-04 3.15e+03 input[0]
2.65e-04 3.42e+03 output[0]
None output[1]
2.25e-01 1.00e+04 output[2]
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.dropout Dropout
0.00e+00 8.76e+03 input[0]
0.00e+00 9.74e+03 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
The example output has been trimmed in the middle for brevity.
The second column shows the value of the absolute largest element, so if you have a closer look at the last few frames,
the inputs and outputs were in the range of `1e4`. So when this training was done under fp16 mixed precision the very
last step overflowed (since under `fp16` the largest number before `inf` is `64e3`). To avoid overflows under
`fp16` the activations must remain way below `1e4`, because `1e4 * 1e4 = 1e8` so any matrix multiplication with
large activations is going to lead to a numerical overflow condition.
At the very start of the trace you can discover at which batch number the problem occurred (here `Detected inf/nan during batch_number=0` means the problem occurred on the first batch).
Each reported frame starts by declaring the fully qualified entry for the corresponding module this frame is reporting
for. If we look just at this frame:
```
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
```
Here, `encoder.block.2.layer.1.layer_norm` indicates that it was a layer norm for the first layer, of the second
block of the encoder. And the specific calls of the `forward` is `T5LayerNorm`.
Let's look at the last few frames of that report:
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
[...]
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
The last frame reports for `Dropout.forward` function with the first entry for the only input and the second for the
only output. You can see that it was called from an attribute `dropout` inside `DenseReluDense` class. We can see
that it happened during the first layer, of the 2nd block, during the very first batch. Finally, the absolute largest
input elements was `6.27e+04` and same for the output was `inf`.
You can see here, that `T5DenseGatedGeluDense.forward` resulted in output activations, whose absolute max value was
around 62.7K, which is very close to fp16's top limit of 64K. In the next frame we have `Dropout` which renormalizes
the weights, after it zeroed some of the elements, which pushes the absolute max value to more than 64K, and we get an
overflow (`inf`).
As you can see it's the previous frames that we need to look into when the numbers start going into very large for fp16
numbers.
Let's match the report to the code from `models/t5/modeling_t5.py`:
```python
class T5DenseGatedGeluDense(nn.Module):
def __init__(self, config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.gelu_act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
```
Now it's easy to see the `dropout` call, and all the previous calls as well.
Since the detection is happening in a forward hook, these reports are printed immediately after each `forward`
returns.
Going back to the full report, to act on it and to fix the problem, we need to go a few frames up where the numbers
started to go up and most likely switch to the `fp32` mode here, so that the numbers don't overflow when multiplied
or summed up. Of course, there might be other solutions. For example, we could turn off `amp` temporarily if it's
enabled, after moving the original `forward` into a helper wrapper, like so:
```python
def _forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
import torch
def forward(self, hidden_states):
if torch.is_autocast_enabled():
with torch.cuda.amp.autocast(enabled=False):
return self._forward(hidden_states)
else:
return self._forward(hidden_states)
```
Since the automatic detector only reports on inputs and outputs of full frames, once you know where to look, you may
want to analyse the intermediary stages of any specific `forward` function as well. In such a case you can use the
`detect_overflow` helper function to inject the detector where you want it, for example:
```python
from debug_utils import detect_overflow
class T5LayerFF(nn.Module):
[...]
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
detect_overflow(forwarded_states, "after layer_norm")
forwarded_states = self.DenseReluDense(forwarded_states)
detect_overflow(forwarded_states, "after DenseReluDense")
return hidden_states + self.dropout(forwarded_states)
```
You can see that we added 2 of these and now we track if `inf` or `nan` for `forwarded_states` was detected
somewhere in between.
Actually, the detector already reports these because each of the calls in the example above is a `nn.Module`, but
let's say if you had some local direct calculations this is how you'd do that.
Additionally, if you're instantiating the debugger in your own code, you can adjust the number of frames printed from
its default, e.g.:
```python
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```
### Specific batch absolute min and max value tracing
The same debugging class can be used for per-batch tracing with the underflow/overflow detection feature turned off.
Let's say you want to watch the absolute min and max values for all the ingredients of each `forward` call of a given
batch, and only do that for batches 1 and 3. Then you instantiate this class as:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])
```
And now full batches 1 and 3 will be traced using the same format as the underflow/overflow detector does.
Batches are 0-indexed.
This is helpful if you know that the program starts misbehaving after a certain batch number, so you can fast-forward
right to that area. Here is a sample truncated output for such configuration:
```
*** Starting batch number=1 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.47e+04 input[0]
5.36e-05 7.92e+02 output
[...]
decoder.dropout Dropout
1.60e-07 2.27e+01 input[0]
0.00e+00 2.52e+01 output
decoder T5Stack
not a tensor output
lm_head Linear
1.01e-06 7.92e+02 weight
0.00e+00 1.11e+00 input[0]
6.06e-02 8.39e+01 output
T5ForConditionalGeneration
not a tensor output
*** Starting batch number=3 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.78e+04 input[0]
5.36e-05 7.92e+02 output
[...]
```
Here you will get a huge number of frames dumped - as many as there were forward calls in your model, so it may or may
not what you want, but sometimes it can be easier to use for debugging purposes than a normal debugger. For example, if
a problem starts happening at batch number 150. So you can dump traces for batches 149 and 150 and compare where
numbers started to diverge.
You can also specify the batch number after which to stop the training, with:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
```
|