Spaces:
No application file
No application file
File size: 5,350 Bytes
15fa80a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import torch
import numpy as np
import json
import os
import shutil
from copy import deepcopy
import torch
import torch.nn as nn
from sklearn.utils import shuffle
# from tqdm import tqdm
import time
def tvd(predictions, targets): #accepts two numpy arrays of dimension: (num. instances, )
return (0.5 * np.abs(predictions - targets)).sum()
def batch_tvd(predictions, targets,reduce=True): #accepts two Torch tensors... " "
if reduce == False:
return (0.5 * torch.abs(predictions - targets))
else:
return (0.5 * torch.abs(predictions - targets)).sum()
def get_sorting_index_with_noise_from_lengths(lengths, noise_frac):
if noise_frac > 0:
noisy_lengths = [x + np.random.randint(np.floor(-x * noise_frac), np.ceil(x * noise_frac)) for x in lengths]
else:
noisy_lengths = lengths
return np.argsort(noisy_lengths)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def kld(a1, a2):
# (B, *, A), #(B, *, A)
a1 = torch.clamp(a1, 0, 1)
a2 = torch.clamp(a2, 0, 1)
log_a1 = torch.log(a1 + 1e-10)
log_a2 = torch.log(a2 + 1e-10)
kld = a1 * (log_a1 - log_a2)
kld = kld.sum(-1)
return kld
def jsd(p, q):
m = 0.5 * (p + q)
jsd = 0.5 * (kld(p, m) + kld(q, m)) # for each instance in the batch
return jsd.unsqueeze(-1) # jsd.squeeze(1).sum()
def tvd(predictions, targets): #accepts two numpy arrays of dimension: (num. instances, )
return (0.5 * np.abs(predictions - targets)).sum()
def batch_tvd(predictions, targets): #accepts two Torch tensors... " "
return (0.5 * torch.abs(predictions - targets)).sum()
def batch_jaccard_similarity(gt, pred):
intersection = torch.min(gt, pred).sum(dim=1)
union = torch.max(gt, pred).sum(dim=1)
similarity = intersection / union
return similarity
def jaccard_similarity(gt, pred, top_k=2):
gt_top_k = torch.topk(gt, top_k, dim=1).values
pred_top_k = torch.topk(pred, top_k, dim=1).values
jaccard_sim = batch_jaccard_similarity(gt_top_k, pred_top_k)
mean_similarity = jaccard_sim.mean()
return mean_similarity
def intersection_of_two_tensor(t1, t2):
combined = torch.cat((t1, t2))
uniques, counts = combined.unique(return_counts=True)
intersection = uniques[counts > 1]
return intersection
def topK_overlap_true_loss(a,b,K=2):
t1 = torch.argsort(a, descending=True)
t2 = torch.argsort(b, descending=True)
t1 = t1.detach().cpu().numpy()
t2 = t2.detach().cpu().numpy()
N = t1.shape[0]
loss = []
for i in range(N):
inset = np.intersect1d(t1[i,:K],t2[i,:K])
overlap = len(inset)/K
# print(overlap)
loss.append(overlap)
return np.mean(loss)
class AverageMeter():
def __init__(self):
self.cnt = 0
self.sum = 0
self.mean = 0
def update(self, val, cnt):
self.cnt += cnt
self.sum += val * cnt
self.mean = self.sum / self.cnt
def average(self):
return self.mean
def total(self):
return self.sum
def topk_overlap_loss(gt,pred,K=2,metric='l1'):
idx = torch.argsort(gt,dim=1,descending=True)
# print(idx)
idx = idx[:,:K]
pred_TopK_1 = pred.gather(1,idx)
gt_Topk_1 = gt.gather(1,idx)
idx_pred = torch.argsort(pred,dim=1,descending=True)
idx_pred = idx_pred[:,:K]
try:
gt_TopK_2 = gt.gather(1, idx_pred)
except Exception as e:
print(e)
print(gt.shape)
print(idx_pred.shape)
pred_TopK_2 = pred.gather(1, idx_pred)
gt_Topk_1_normed = torch.nn.functional.softmax(gt_Topk_1,dim=-1)
pred_TopK_1_normed = torch.nn.functional.softmax(pred_TopK_1,dim=-1)
gt_TopK_2_normed = torch.nn.functional.softmax(gt_TopK_2,dim=-1)
pred_TopK_2_normed = torch.nn.functional.softmax(pred_TopK_2,dim=-1)
def kl(a,b):
return torch.nn.functional.kl_div(a.log(), b, reduction="batchmean")
def jsd(a,b):
loss = kl(a,b) + kl(b,a)
loss /= 2
return loss
if metric == 'l1':
loss = torch.abs((pred_TopK_1 - gt_Topk_1)) + torch.abs(gt_TopK_2 - pred_TopK_2)
loss = loss/(2*K)
elif metric == "l2":
loss = torch.norm(pred_TopK_1 - gt_Topk_1, p=2) + torch.norm(gt_TopK_2 - pred_TopK_2, p=2)
loss = loss/(2*K)
elif metric == "kl-full":
loss = kl(gt,pred)
elif metric == "jsd-full":
loss = jsd(gt,pred)
elif metric == "kl-topk":
loss = kl(gt_Topk_1_normed,pred_TopK_1_normed) + kl(gt_TopK_2_normed,pred_TopK_2_normed)
loss /=2
elif metric == "jsd-topk":
loss = jsd(gt_Topk_1_normed, pred_TopK_1_normed) + jsd(gt_TopK_2_normed, pred_TopK_2_normed)
loss /= 2
return loss
if __name__ == '__main__':
from torch.autograd import gradcheck
import torch
import torch.nn as nn
# intersection_of_two_tensor(t1[i], t2[i])
t1 = torch.tensor(
np.array([[100, 2, 3, 4],
[2, 1, 3, 7]],),requires_grad=True, dtype=torch.double
)
print(t1.shape)
t2 = torch.tensor(
np.array([[1, 2, 3, 4],
[2, 4, 6, 7]]),requires_grad=True, dtype=torch.double
)
print(t2.shape)
print(topK_overlap_true_loss(torch.argsort(t1,descending=True),torch.argsort(t2,descending=True),K=2))
|