Spaces:
No application file
No application file
File size: 6,482 Bytes
15fa80a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import json
# import clip
from CLIP import clip
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import eval_trans_per as eval_trans
from dataset import dataset_TM_eval
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
from tqdm import trange
warnings.filterwarnings('ignore')
##### ---- Exp dirs ---- #####
os.chdir('/root/autodl-tmp/SATO')
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
from utils.word_vectorizer import WordVectorizer
w_vectorizer = WordVectorizer('./glove', 'our_vab')
val_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
## load clip model and datasets
clip_model, clip_preprocess = clip.load(args.clip_path, device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.train()
trans_encoder.cuda()
print('checkpoints loading successfully')
fid = []
fid_per=[]
div = []
top1 = []
top2 = []
top3 = []
matching = []
multi = []
repeat_time = 20
fid_word_perb=[]
for i in range(repeat_time):
print('repeat_time: ',i)
best_fid,best_fid_word_perb,best_fid_per, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, best_multi, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000,best_fid_word_perb=1000,best_fid_perturbation=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, best_multi=0, clip_model=clip_model, eval_wrapper=eval_wrapper, draw=False, savegif=False, save=False, savenpy=(i==0))
fid.append(best_fid)
fid_word_perb.append(best_fid_word_perb)
fid_per.append(best_fid_per)
div.append(best_div)
top1.append(best_top1)
top2.append(best_top2)
top3.append(best_top3)
matching.append(best_matching)
multi.append(best_multi)
# print('fid: ', sum(fid)/(i+1))
# print('fid_per',sum(fid_per)/(i+1))
# print('div: ', sum(div)/(i+1))
# print('top1: ', sum(top1)/(i+1))
# print('top2: ', sum(top2)/(i+1))
# print('top3: ', sum(top3)/(i+1))
# print('matching: ', sum(matching)/(i+1))
# print('multi: ', sum(multi)/(i+1))
print('final result:')
print('fid: ', sum(fid)/repeat_time)
print('fid_word_perb',sum(fid_word_perb)/repeat_time)
print('fid_per',sum(fid_per)/repeat_time)
print('div: ', sum(div)/repeat_time)
print('top1: ', sum(top1)/repeat_time)
print('top2: ', sum(top2)/repeat_time)
print('top3: ', sum(top3)/repeat_time)
print('matching: ', sum(matching)/repeat_time)
# print('multi: ', sum(multi)/repeat_time)
fid = np.array(fid)
fid_word_perb=np.array(fid_word_perb)
fid_per=np.array(fid_per)
div = np.array(div)
top1 = np.array(top1)
top2 = np.array(top2)
top3 = np.array(top3)
matching = np.array(matching)
# multi = np.array(multi)
# msg_final = f"FID. {np.mean(fid):.3f}, FID_PERB.{np.mean(fid_per):.3f}conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}, Multi. {np.mean(multi):.3f}, conf. {np.std(multi)*1.96/np.sqrt(repeat_time):.3f}"
msg_final = f"FID. {np.mean(fid):.3f}, {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, FID_word_perb.{np.mean(fid_word_perb):.3f}, {np.std(fid_word_perb)*1.96/np.sqrt(repeat_time):.3f},FID_PERB.{np.mean(fid_per):.3f}, conf. {np.std(fid)*1.96/np.sqrt(repeat_time):.3f}, Diversity. {np.mean(div):.3f}, conf. {np.std(div)*1.96/np.sqrt(repeat_time):.3f}, TOP1. {np.mean(top1):.3f}, conf. {np.std(top1)*1.96/np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2)*1.96/np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3)*1.96/np.sqrt(repeat_time):.3f}, Matching. {np.mean(matching):.3f}, conf. {np.std(matching)*1.96/np.sqrt(repeat_time):.3f}, conf. {np.std(multi)*1.96/np.sqrt(repeat_time):.3f}"
logger.info(msg_final)
|