File size: 8,703 Bytes
15fa80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from utils.quaternion import *
import scipy.ndimage.filters as filters

class Skeleton(object):
    def __init__(self, offset, kinematic_tree, device):
        self.device = device
        self._raw_offset_np = offset.numpy()
        self._raw_offset = offset.clone().detach().to(device).float()
        self._kinematic_tree = kinematic_tree
        self._offset = None
        self._parents = [0] * len(self._raw_offset)
        self._parents[0] = -1
        for chain in self._kinematic_tree:
            for j in range(1, len(chain)):
                self._parents[chain[j]] = chain[j-1]

    def njoints(self):
        return len(self._raw_offset)

    def offset(self):
        return self._offset

    def set_offset(self, offsets):
        self._offset = offsets.clone().detach().to(self.device).float()

    def kinematic_tree(self):
        return self._kinematic_tree

    def parents(self):
        return self._parents

    # joints (batch_size, joints_num, 3)
    def get_offsets_joints_batch(self, joints):
        assert len(joints.shape) == 3
        _offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
        for i in range(1, self._raw_offset.shape[0]):
            _offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]

        self._offset = _offsets.detach()
        return _offsets

    # joints (joints_num, 3)
    def get_offsets_joints(self, joints):
        assert len(joints.shape) == 2
        _offsets = self._raw_offset.clone()
        for i in range(1, self._raw_offset.shape[0]):
            # print(joints.shape)
            _offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]

        self._offset = _offsets.detach()
        return _offsets

    # face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
    # joints (batch_size, joints_num, 3)
    def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
        assert len(face_joint_idx) == 4
        '''Get Forward Direction'''
        l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
        across1 = joints[:, r_hip] - joints[:, l_hip]
        across2 = joints[:, sdr_r] - joints[:, sdr_l]
        across = across1 + across2
        across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
        # print(across1.shape, across2.shape)

        # forward (batch_size, 3)
        forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
        if smooth_forward:
            forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
            # forward (batch_size, 3)
        forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]

        '''Get Root Rotation'''
        target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
        root_quat = qbetween_np(forward, target)

        '''Inverse Kinematics'''
        # quat_params (batch_size, joints_num, 4)
        # print(joints.shape[:-1])
        quat_params = np.zeros(joints.shape[:-1] + (4,))
        # print(quat_params.shape)
        root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
        quat_params[:, 0] = root_quat
        # quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
        for chain in self._kinematic_tree:
            R = root_quat
            for j in range(len(chain) - 1):
                # (batch, 3)
                u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
                # print(u.shape)
                # (batch, 3)
                v = joints[:, chain[j+1]] - joints[:, chain[j]]
                v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
                # print(u.shape, v.shape)
                rot_u_v = qbetween_np(u, v)

                R_loc = qmul_np(qinv_np(R), rot_u_v)

                quat_params[:,chain[j + 1], :] = R_loc
                R = qmul_np(R, R_loc)

        return quat_params

    # Be sure root joint is at the beginning of kinematic chains
    def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
        # quat_params (batch_size, joints_num, 4)
        # joints (batch_size, joints_num, 3)
        # root_pos (batch_size, 3)
        if skel_joints is not None:
            offsets = self.get_offsets_joints_batch(skel_joints)
        if len(self._offset.shape) == 2:
            offsets = self._offset.expand(quat_params.shape[0], -1, -1)
        joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
        joints[:, 0] = root_pos
        for chain in self._kinematic_tree:
            if do_root_R:
                R = quat_params[:, 0]
            else:
                R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
            for i in range(1, len(chain)):
                R = qmul(R, quat_params[:, chain[i]])
                offset_vec = offsets[:, chain[i]]
                joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
        return joints

    # Be sure root joint is at the beginning of kinematic chains
    def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
        # quat_params (batch_size, joints_num, 4)
        # joints (batch_size, joints_num, 3)
        # root_pos (batch_size, 3)
        if skel_joints is not None:
            skel_joints = torch.from_numpy(skel_joints)
            offsets = self.get_offsets_joints_batch(skel_joints)
        if len(self._offset.shape) == 2:
            offsets = self._offset.expand(quat_params.shape[0], -1, -1)
        offsets = offsets.numpy()
        joints = np.zeros(quat_params.shape[:-1] + (3,))
        joints[:, 0] = root_pos
        for chain in self._kinematic_tree:
            if do_root_R:
                R = quat_params[:, 0]
            else:
                R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
            for i in range(1, len(chain)):
                R = qmul_np(R, quat_params[:, chain[i]])
                offset_vec = offsets[:, chain[i]]
                joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
        return joints

    def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
        # cont6d_params (batch_size, joints_num, 6)
        # joints (batch_size, joints_num, 3)
        # root_pos (batch_size, 3)
        if skel_joints is not None:
            skel_joints = torch.from_numpy(skel_joints)
            offsets = self.get_offsets_joints_batch(skel_joints)
        if len(self._offset.shape) == 2:
            offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
        offsets = offsets.numpy()
        joints = np.zeros(cont6d_params.shape[:-1] + (3,))
        joints[:, 0] = root_pos
        for chain in self._kinematic_tree:
            if do_root_R:
                matR = cont6d_to_matrix_np(cont6d_params[:, 0])
            else:
                matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
            for i in range(1, len(chain)):
                matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
                offset_vec = offsets[:, chain[i]][..., np.newaxis]
                # print(matR.shape, offset_vec.shape)
                joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
        return joints

    def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
        # cont6d_params (batch_size, joints_num, 6)
        # joints (batch_size, joints_num, 3)
        # root_pos (batch_size, 3)
        if skel_joints is not None:
            # skel_joints = torch.from_numpy(skel_joints)
            offsets = self.get_offsets_joints_batch(skel_joints)
        if len(self._offset.shape) == 2:
            offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
        joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
        joints[..., 0, :] = root_pos
        for chain in self._kinematic_tree:
            if do_root_R:
                matR = cont6d_to_matrix(cont6d_params[:, 0])
            else:
                matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
            for i in range(1, len(chain)):
                matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
                offset_vec = offsets[:, chain[i]].unsqueeze(-1)
                # print(matR.shape, offset_vec.shape)
                joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
        return joints