Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,959 Bytes
7e4123a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import json
import requests
import sseclient
from pingpong import PingPong
from pingpong.pingpong import PPManager
from pingpong.pingpong import PromptFmt
from pingpong.pingpong import UIFmt
from pingpong.gradio import GradioChatUIFmt
class MistralChatPromptFmt(PromptFmt):
@classmethod
def ctx(cls, context):
if context is None or context == "":
return ""
else:
return f"""{context}
"""
@classmethod
def prompt(cls, pingpong, truncate_size):
ping = pingpong.ping[:truncate_size]
pong = "" if pingpong.pong is None else pingpong.pong[:truncate_size] + "</s>"
return f"""<s>[INST] {ping} [/INST] {pong}
"""
class MistralChatPPManager(PPManager):
def build_prompts(self, from_idx: int=0, to_idx: int=-1, fmt: PromptFmt=MistralChatPromptFmt, truncate_size: int=None):
if to_idx == -1 or to_idx >= len(self.pingpongs):
to_idx = len(self.pingpongs)
results = fmt.ctx(self.ctx)
for idx, pingpong in enumerate(self.pingpongs[from_idx:to_idx]):
results += fmt.prompt(pingpong, truncate_size=truncate_size)
return results
class GradioMistralChatPPManager(MistralChatPPManager):
def build_uis(self, from_idx: int=0, to_idx: int=-1, fmt: UIFmt=GradioChatUIFmt):
if to_idx == -1 or to_idx >= len(self.pingpongs):
to_idx = len(self.pingpongs)
results = []
for pingpong in self.pingpongs[from_idx:to_idx]:
results.append(fmt.ui(pingpong))
return results
class LLaMA2ChatPromptFmt(PromptFmt):
@classmethod
def ctx(cls, context):
if context is None or context == "":
return ""
else:
return f"""<<SYS>>
{context}
<</SYS>>
"""
@classmethod
def prompt(cls, pingpong, truncate_size):
ping = pingpong.ping[:truncate_size]
pong = "" if pingpong.pong is None else pingpong.pong[:truncate_size]
return f"""[INST] {ping} [/INST] {pong}"""
class LLaMA2ChatPPManager(PPManager):
def build_prompts(self, from_idx: int=0, to_idx: int=-1, fmt: PromptFmt=LLaMA2ChatPromptFmt, truncate_size: int=None):
if to_idx == -1 or to_idx >= len(self.pingpongs):
to_idx = len(self.pingpongs)
results = fmt.ctx(self.ctx)
for idx, pingpong in enumerate(self.pingpongs[from_idx:to_idx]):
results += fmt.prompt(pingpong, truncate_size=truncate_size)
return results
class GradioLLaMA2ChatPPManager(LLaMA2ChatPPManager):
def build_uis(self, from_idx: int=0, to_idx: int=-1, fmt: UIFmt=GradioChatUIFmt):
if to_idx == -1 or to_idx >= len(self.pingpongs):
to_idx = len(self.pingpongs)
results = []
for pingpong in self.pingpongs[from_idx:to_idx]:
results.append(fmt.ui(pingpong))
return results
async def gen_text(
prompt,
hf_model='mistralai/Mistral-7B-Instruct-v0.2', # 'mistralai/Mixtral-8x7B-Instruct-v0.1', # 'mistralai/Mistral-7B-Instruct-v0.1', # 'meta-llama/Llama-2-70b-chat-hf',
hf_token=None,
parameters=None
):
if hf_token is None:
raise ValueError("Hugging Face Token is not set")
if parameters is None:
parameters = {
'max_new_tokens': 512,
'do_sample': True,
'return_full_text': False,
'temperature': 1.0,
'top_k': 50,
# 'top_p': 1.0,
'repetition_penalty': 1.2
}
url = f'https://api-inference.huggingface.co/models/{hf_model}'
headers={
'Authorization': f'Bearer {hf_token}',
'Content-type': 'application/json'
}
data = {
'inputs': prompt,
'stream': True,
'options': {
'use_cache': False,
},
'parameters': parameters
}
r = requests.post(
url,
headers=headers,
data=json.dumps(data),
stream=True
)
try:
client = sseclient.SSEClient(r)
for event in client.events():
yield json.loads(event.data)['token']['text']
except Exception as e:
print(e)
def gen_text_none_stream(
prompt,
hf_model='meta-llama/Llama-2-70b-chat-hf',
hf_token=None,
):
parameters = {
'max_new_tokens': 64,
'do_sample': True,
'return_full_text': False,
'temperature': 0.7,
'top_k': 10,
# 'top_p': 1.0,
'repetition_penalty': 1.2
}
url = f'https://api-inference.huggingface.co/models/{hf_model}'
headers={
'Authorization': f'Bearer {hf_token}',
'Content-type': 'application/json'
}
data = {
'inputs': prompt,
'stream': False,
'options': {
'use_cache': False,
},
'parameters': parameters
}
r = requests.post(
url,
headers=headers,
data=json.dumps(data),
)
return json.loads(r.text)[0]["generated_text"] |