File size: 10,974 Bytes
ad74093
 
4c5289e
 
ad74093
 
 
 
4c5289e
 
 
ad74093
 
4c5289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad74093
 
4c5289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad74093
 
4c5289e
 
ad74093
 
 
 
 
 
 
4c5289e
 
 
 
 
ad74093
4c5289e
 
 
 
 
ad74093
4c5289e
 
 
 
 
 
 
 
 
ad74093
4c5289e
 
 
 
ad74093
4c5289e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad74093
4c5289e
 
 
 
ad74093
4c5289e
 
ad74093
4c5289e
 
 
 
 
 
 
ad74093
4c5289e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""⭐ Text Classification with Optimum and ONNXRuntime

Streamlit application to classify text using multiple models.

Author:
    - @ChainYo - https://github.com/ChainYo
"""

import plotly
import numpy as np
import pandas as pd
import streamlit as st

from pathlib import Path
from time import sleep
from typing import Dict, List, Union

from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
from optimum.onnxruntime.model import ORTModel
from optimum.pipelines import pipeline as ort_pipeline
from transformers import BertTokenizer, BertForSequenceClassification, pipeline

from utils import calculate_inference_time


HUB_MODEL_PATH = "yiyanghkust/finbert-tone"
BASE_PATH = Path("models")
ONNX_MODEL_PATH = BASE_PATH.joinpath("model.onnx")
OPTIMIZED_BASE_PATH = BASE_PATH.joinpath("optimized")
OPTIMIZED_MODEL_PATH = OPTIMIZED_BASE_PATH.joinpath("model-optimized.onnx")
QUANTIZED_BASE_PATH = BASE_PATH.joinpath("quantized")
QUANTIZED_MODEL_PATH = QUANTIZED_BASE_PATH.joinpath("model-quantized.onnx")
VAR2LABEL = {
    "pt_pipeline": "PyTorch", 
    "ort_pipeline": "ONNXRuntime", 
    "ort_optimized_pipeline": "ONNXRuntime (Optimized)", 
    "ort_quantized_pipeline": "ONNXRuntime (Quantized)",
}


def get_timers(
    samples: Union[List[str], str], exp_number: int, only_mean: bool = False
) -> Dict[str, float]:
    """
    Calculate inference time for each model for a given sample or list of samples.

    Parameters
    ----------
    samples : Union[List[str], str]
        Sample or list of samples to calculate inference time for.
    exp_number : int
        Number of experiments to run.
    
    Returns
    -------
    Dict[str, float]
        Dictionary of inference times for each model for the given samples.
    """
    if isinstance(samples, str):
        samples = [samples]
    
    timers: Dict[str, float] = {}
    for model in VAR2LABEL.keys():
        time_buffer = []
        for _ in range(exp_number):
            with calculate_inference_time(time_buffer):
                st.session_state[model](samples)
        timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
    return timers


def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs._figure.Figure:
    """
    Plot the inference time for each model.

    Parameters
    ----------
    timers : Dict[str, Union[float, List[float]]]
        Dictionary of inference times for each model.
    """
    data = pd.DataFrame.from_dict(timers, orient="columns")
    colors = ["#140f0d", "#2b2c4f", "#615aa2", "#a991fa"]
    fig = plotly.figure_factory.create_distplot(
        [data[col] for col in data.columns], data.columns, bin_size=0.2, colors=colors
    )
    fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
    return fig
        

st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
st.title("⭐ Optimum Text Classification")
st.subheader("Classify financial news tone with 🤗 Optimum and ONNXRuntime")
st.markdown("""
[![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo)
[![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo)
[![LinkedIn](https://img.shields.io/badge/-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/thomas-chaigneau-dev/)
[![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/)
""")

with st.expander("⭐ Details", expanded=True):
    st.markdown(
        """
        This app is a **demo** of the [🤗 Optimum Text Classification](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort#optimum-inference-with-onnx-runtime) pipeline.
        We aim to compare the original pipeline with the ONNXRuntime pipeline.

        We use the [Finbert-Tone](https://huggingface.co/yiyanghkust/finbert-tone) model to classify financial news tone for the demo.
        
        You can enter multiple sentences to classify them by separating them with a `; (semicolon)`.
        """
    )

if "init_models" not in st.session_state:
    st.session_state["init_models"] = True
if st.session_state["init_models"]:
    with st.spinner(text="Loading files and models..."):
        loading_logs = st.empty()
        with loading_logs.container():
            BASE_PATH.mkdir(exist_ok=True)
            QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
            OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)

            if "tokenizer" not in st.session_state:
                tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
                st.session_state["tokenizer"] = tokenizer
            st.text("✅ Tokenizer loaded.")

            if "pt_model" not in st.session_state:
                pt_model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
                st.session_state["pt_model"] = pt_model
            st.text("✅ PyTorch model loaded.")

            if "ort_model" not in st.session_state:
                ort_model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
                # if not ONNX_MODEL_PATH.exists():
                #     ort_model.save_pretrained(ONNX_MODEL_PATH)
                st.session_state["ort_model"] = ort_model
            st.text("✅ ONNX Model loaded.")

            if "optimized_model" not in st.session_state:
                optimization_config = OptimizationConfig(optimization_level=99)
                optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
                if not OPTIMIZED_MODEL_PATH.exists():
                    optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
                    optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
                optimized_model = ORTModelForSequenceClassification.from_pretrained(
                    OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
                )
                st.session_state["optimized_model"] = optimized_model
            st.text("✅ Optimized ONNX model loaded.")

            if "quantized_model" not in st.session_state:
                quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
                quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
                if not QUANTIZED_MODEL_PATH.exists():
                    quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
                    quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
                quantized_model = ORTModelForSequenceClassification.from_pretrained(
                    QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
                )
                st.session_state["quantized_model"] = quantized_model
            st.text("✅ Quantized ONNX model loaded.")

            if "pt_pipeline" not in st.session_state:
                pt_pipeline = pipeline(
                    "sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=st.session_state["pt_model"]
                )
                st.session_state["pt_pipeline"] = pt_pipeline

            if "ort_pipeline" not in st.session_state:
                ort_pipeline = ort_pipeline(
                    "text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["ort_model"]
                )
                st.session_state["ort_pipeline"] = ort_pipeline

            if "ort_optimized_pipeline" not in st.session_state:
                ort_optimized_pipeline = pipeline(
                    "text-classification", 
                    tokenizer=st.session_state["tokenizer"], 
                    model=st.session_state["optimized_model"],
                )
                st.session_state["ort_optimized_pipeline"] = ort_optimized_pipeline

            if "ort_quantized_pipeline" not in st.session_state:
                ort_quantized_pipeline = pipeline(
                    "text-classification", 
                    tokenizer=st.session_state["tokenizer"], 
                    model=st.session_state["quantized_model"],
                )
                st.session_state["ort_quantized_pipeline"] = ort_quantized_pipeline

            st.text("✅ All pipelines are ready.")
        sleep(2)
        loading_logs.success("🎉 Everything is ready!")
st.session_state["init_models"] = False

if "inference_timers" not in st.session_state:
    st.session_state["inference_timers"] = {}

exp_number = st.slider("The number of experiments per model.", min_value=100, max_value=300, value=150)
get_only_mean = st.checkbox("Get only the mean of the inference time for each model.", value=False)
input_text = st.text_area(
    "Enter text to classify", 
    "there is a shortage of capital, and we need extra financing; growth is strong and we have plenty of liquidity; there are doubts about our finances; profits are flat"
)
run_inference = st.button("🚀 Run inference")

if run_inference:
    st.text("🔎 Running inference...")
    sentences = input_text.split(";")
    st.session_state["inference_timers"] = get_timers(samples=sentences, exp_number=exp_number, only_mean=get_only_mean)
    st.plotly_chart(get_plot(st.session_state["inference_timers"]), use_container_width=True)