Spaces:
Runtime error
Runtime error
fix app
Browse files
main.py
CHANGED
@@ -1,21 +1,96 @@
|
|
1 |
"""⭐ Text Classification with Optimum and ONNXRuntime
|
2 |
|
|
|
|
|
3 |
Author:
|
4 |
- @ChainYo - https://github.com/ChainYo
|
5 |
"""
|
6 |
|
|
|
|
|
|
|
7 |
import streamlit as st
|
8 |
|
9 |
-
from
|
10 |
-
from
|
11 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
17 |
-
st.title("
|
18 |
-
st.subheader("
|
19 |
st.markdown("""
|
20 |
[![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo)
|
21 |
[![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo)
|
@@ -23,36 +98,115 @@ st.markdown("""
|
|
23 |
[![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/)
|
24 |
""")
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
if "
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
if "
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
st.session_state["ort_pipeline"] = ort_pipeline
|
43 |
|
44 |
-
if "
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
quantized = st.checkbox("Quantize the model", value=False)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""⭐ Text Classification with Optimum and ONNXRuntime
|
2 |
|
3 |
+
Streamlit application to classify text using multiple models.
|
4 |
+
|
5 |
Author:
|
6 |
- @ChainYo - https://github.com/ChainYo
|
7 |
"""
|
8 |
|
9 |
+
import plotly
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
import streamlit as st
|
13 |
|
14 |
+
from pathlib import Path
|
15 |
+
from time import sleep
|
16 |
+
from typing import Dict, List, Union
|
17 |
+
|
18 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
|
19 |
+
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
|
20 |
+
from optimum.onnxruntime.model import ORTModel
|
21 |
+
from optimum.pipelines import pipeline as ort_pipeline
|
22 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
23 |
+
|
24 |
+
from utils import calculate_inference_time
|
25 |
+
|
26 |
+
|
27 |
+
HUB_MODEL_PATH = "yiyanghkust/finbert-tone"
|
28 |
+
BASE_PATH = Path("models")
|
29 |
+
ONNX_MODEL_PATH = BASE_PATH.joinpath("model.onnx")
|
30 |
+
OPTIMIZED_BASE_PATH = BASE_PATH.joinpath("optimized")
|
31 |
+
OPTIMIZED_MODEL_PATH = OPTIMIZED_BASE_PATH.joinpath("model-optimized.onnx")
|
32 |
+
QUANTIZED_BASE_PATH = BASE_PATH.joinpath("quantized")
|
33 |
+
QUANTIZED_MODEL_PATH = QUANTIZED_BASE_PATH.joinpath("model-quantized.onnx")
|
34 |
+
VAR2LABEL = {
|
35 |
+
"pt_pipeline": "PyTorch",
|
36 |
+
"ort_pipeline": "ONNXRuntime",
|
37 |
+
"ort_optimized_pipeline": "ONNXRuntime (Optimized)",
|
38 |
+
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
|
39 |
+
}
|
40 |
|
41 |
|
42 |
+
def get_timers(
|
43 |
+
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
|
44 |
+
) -> Dict[str, float]:
|
45 |
+
"""
|
46 |
+
Calculate inference time for each model for a given sample or list of samples.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
samples : Union[List[str], str]
|
51 |
+
Sample or list of samples to calculate inference time for.
|
52 |
+
exp_number : int
|
53 |
+
Number of experiments to run.
|
54 |
+
|
55 |
+
Returns
|
56 |
+
-------
|
57 |
+
Dict[str, float]
|
58 |
+
Dictionary of inference times for each model for the given samples.
|
59 |
+
"""
|
60 |
+
if isinstance(samples, str):
|
61 |
+
samples = [samples]
|
62 |
+
|
63 |
+
timers: Dict[str, float] = {}
|
64 |
+
for model in VAR2LABEL.keys():
|
65 |
+
time_buffer = []
|
66 |
+
for _ in range(exp_number):
|
67 |
+
with calculate_inference_time(time_buffer):
|
68 |
+
st.session_state[model](samples)
|
69 |
+
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
|
70 |
+
return timers
|
71 |
+
|
72 |
+
|
73 |
+
def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs._figure.Figure:
|
74 |
+
"""
|
75 |
+
Plot the inference time for each model.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
timers : Dict[str, Union[float, List[float]]]
|
80 |
+
Dictionary of inference times for each model.
|
81 |
+
"""
|
82 |
+
data = pd.DataFrame.from_dict(timers, orient="columns")
|
83 |
+
colors = ["#140f0d", "#2b2c4f", "#615aa2", "#a991fa"]
|
84 |
+
fig = plotly.figure_factory.create_distplot(
|
85 |
+
[data[col] for col in data.columns], data.columns, bin_size=0.2, colors=colors
|
86 |
+
)
|
87 |
+
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
|
88 |
+
return fig
|
89 |
+
|
90 |
|
91 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
92 |
+
st.title("⭐ Optimum Text Classification")
|
93 |
+
st.subheader("Classify financial news tone with 🤗 Optimum and ONNXRuntime")
|
94 |
st.markdown("""
|
95 |
[![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo)
|
96 |
[![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo)
|
|
|
98 |
[![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/)
|
99 |
""")
|
100 |
|
101 |
+
with st.expander("⭐ Details", expanded=True):
|
102 |
+
st.markdown(
|
103 |
+
"""
|
104 |
+
This app is a **demo** of the [🤗 Optimum Text Classification](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort#optimum-inference-with-onnx-runtime) pipeline.
|
105 |
+
We aim to compare the original pipeline with the ONNXRuntime pipeline.
|
106 |
|
107 |
+
We use the [Finbert-Tone](https://huggingface.co/yiyanghkust/finbert-tone) model to classify financial news tone for the demo.
|
108 |
+
|
109 |
+
You can enter multiple sentences to classify them by separating them with a `; (semicolon)`.
|
110 |
+
"""
|
111 |
+
)
|
112 |
|
113 |
+
if "init_models" not in st.session_state:
|
114 |
+
st.session_state["init_models"] = True
|
115 |
+
if st.session_state["init_models"]:
|
116 |
+
with st.spinner(text="Loading files and models..."):
|
117 |
+
loading_logs = st.empty()
|
118 |
+
with loading_logs.container():
|
119 |
+
BASE_PATH.mkdir(exist_ok=True)
|
120 |
+
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
|
121 |
+
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
|
122 |
|
123 |
+
if "tokenizer" not in st.session_state:
|
124 |
+
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
|
125 |
+
st.session_state["tokenizer"] = tokenizer
|
126 |
+
st.text("✅ Tokenizer loaded.")
|
|
|
127 |
|
128 |
+
if "pt_model" not in st.session_state:
|
129 |
+
pt_model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
|
130 |
+
st.session_state["pt_model"] = pt_model
|
131 |
+
st.text("✅ PyTorch model loaded.")
|
132 |
+
|
133 |
+
if "ort_model" not in st.session_state:
|
134 |
+
ort_model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
|
135 |
+
# if not ONNX_MODEL_PATH.exists():
|
136 |
+
# ort_model.save_pretrained(ONNX_MODEL_PATH)
|
137 |
+
st.session_state["ort_model"] = ort_model
|
138 |
+
st.text("✅ ONNX Model loaded.")
|
139 |
+
|
140 |
+
if "optimized_model" not in st.session_state:
|
141 |
+
optimization_config = OptimizationConfig(optimization_level=99)
|
142 |
+
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
143 |
+
if not OPTIMIZED_MODEL_PATH.exists():
|
144 |
+
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
|
145 |
+
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
|
146 |
+
optimized_model = ORTModelForSequenceClassification.from_pretrained(
|
147 |
+
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
|
148 |
+
)
|
149 |
+
st.session_state["optimized_model"] = optimized_model
|
150 |
+
st.text("✅ Optimized ONNX model loaded.")
|
151 |
+
|
152 |
+
if "quantized_model" not in st.session_state:
|
153 |
+
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
|
154 |
+
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
155 |
+
if not QUANTIZED_MODEL_PATH.exists():
|
156 |
+
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
|
157 |
+
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
|
158 |
+
quantized_model = ORTModelForSequenceClassification.from_pretrained(
|
159 |
+
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
|
160 |
+
)
|
161 |
+
st.session_state["quantized_model"] = quantized_model
|
162 |
+
st.text("✅ Quantized ONNX model loaded.")
|
163 |
+
|
164 |
+
if "pt_pipeline" not in st.session_state:
|
165 |
+
pt_pipeline = pipeline(
|
166 |
+
"sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=st.session_state["pt_model"]
|
167 |
+
)
|
168 |
+
st.session_state["pt_pipeline"] = pt_pipeline
|
169 |
+
|
170 |
+
if "ort_pipeline" not in st.session_state:
|
171 |
+
ort_pipeline = ort_pipeline(
|
172 |
+
"text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["ort_model"]
|
173 |
+
)
|
174 |
+
st.session_state["ort_pipeline"] = ort_pipeline
|
175 |
+
|
176 |
+
if "ort_optimized_pipeline" not in st.session_state:
|
177 |
+
ort_optimized_pipeline = pipeline(
|
178 |
+
"text-classification",
|
179 |
+
tokenizer=st.session_state["tokenizer"],
|
180 |
+
model=st.session_state["optimized_model"],
|
181 |
+
)
|
182 |
+
st.session_state["ort_optimized_pipeline"] = ort_optimized_pipeline
|
183 |
+
|
184 |
+
if "ort_quantized_pipeline" not in st.session_state:
|
185 |
+
ort_quantized_pipeline = pipeline(
|
186 |
+
"text-classification",
|
187 |
+
tokenizer=st.session_state["tokenizer"],
|
188 |
+
model=st.session_state["quantized_model"],
|
189 |
+
)
|
190 |
+
st.session_state["ort_quantized_pipeline"] = ort_quantized_pipeline
|
191 |
|
192 |
+
st.text("✅ All pipelines are ready.")
|
193 |
+
sleep(2)
|
194 |
+
loading_logs.success("🎉 Everything is ready!")
|
195 |
+
st.session_state["init_models"] = False
|
196 |
|
197 |
+
if "inference_timers" not in st.session_state:
|
198 |
+
st.session_state["inference_timers"] = {}
|
|
|
199 |
|
200 |
+
exp_number = st.slider("The number of experiments per model.", min_value=100, max_value=300, value=150)
|
201 |
+
get_only_mean = st.checkbox("Get only the mean of the inference time for each model.", value=False)
|
202 |
+
input_text = st.text_area(
|
203 |
+
"Enter text to classify",
|
204 |
+
"there is a shortage of capital, and we need extra financing; growth is strong and we have plenty of liquidity; there are doubts about our finances; profits are flat"
|
205 |
+
)
|
206 |
+
run_inference = st.button("🚀 Run inference")
|
207 |
|
208 |
+
if run_inference:
|
209 |
+
st.text("🔎 Running inference...")
|
210 |
+
sentences = input_text.split(";")
|
211 |
+
st.session_state["inference_timers"] = get_timers(samples=sentences, exp_number=exp_number, only_mean=get_only_mean)
|
212 |
+
st.plotly_chart(get_plot(st.session_state["inference_timers"]), use_container_width=True)
|