Spaces:
Runtime error
Runtime error
File size: 5,611 Bytes
2e4274a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# ###########################################################################
#
# CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
# (C) Cloudera, Inc. 2022
# All rights reserved.
#
# Applicable Open Source License: Apache 2.0
#
# NOTE: Cloudera open source products are modular software products
# made up of hundreds of individual components, each of which was
# individually copyrighted. Each Cloudera open source product is a
# collective work under U.S. Copyright Law. Your license to use the
# collective work is as provided in your written agreement with
# Cloudera. Used apart from the collective work, this file is
# licensed for your use pursuant to the open source license
# identified above.
#
# This code is provided to you pursuant a written agreement with
# (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
# this code. If you do not have a written agreement with Cloudera nor
# with an authorized and properly licensed third party, you do not
# have any rights to access nor to use this code.
#
# Absent a written agreement with Cloudera, Inc. (βClouderaβ) to the
# contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
# KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
# WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
# IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
# FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
# AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
# ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
# OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
# CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
# RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
# BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
# DATA.
#
# ###########################################################################
from typing import Iterable
import altair as alt
from captum.attr._utils.visualization import (
VisualizationDataRecord,
format_word_importances,
_get_color,
)
try:
from IPython.display import display, HTML
HAS_IPYTHON = True
except ImportError:
HAS_IPYTHON = False
def format_classname(classname):
return f'<td>{classname}</td>'
def visualize_text(
datarecords: Iterable[VisualizationDataRecord], legend: bool = True
) -> "HTML": # In quotes because this type doesn't exist in standalone mode
assert HAS_IPYTHON, (
"IPython must be available to visualize text. "
"Please run 'pip install ipython'."
)
dom = []
dom.append(
'<head><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"></head>'
)
dom.append("""<table width:100; class="table">""")
rows = [
"<thead>"
"<tr>"
"<th scope='col'><span class='text-nowrap'>Predicted Label</span></th>"
"<th scope='col'><span class='text-nowrap'>Attribution Score</span></th>"
"<th scope='col'><span class='text-nowrap'>Feature Importance</span></th>"
"</tr>"
"</thead>"
]
for datarecord in datarecords:
rows.append(
"".join(
[
"<tbody>",
"<tr>",
format_classname(
f"{datarecord.pred_class.capitalize()}"
),
format_classname(f"{round(datarecord.attr_score.item(), 2)}"),
format_word_importances(
datarecord.raw_input_ids, datarecord.word_attributions
),
"<tr>",
"</tbody>",
]
)
)
dom.append("".join(rows))
dom.append("</table>")
if legend:
dom.append("<div class='row'>")
dom.append("<div class='col-6'>")
dom.append("<b>Legend: </b>")
for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
dom.append(
'<span style="display: inline-block; width: 10px; height: 10px; \
border: 1px solid; background-color: \
{value}"></span> {label} '.format(
value=_get_color(value), label=label
)
)
dom.append("</div>")
dom.append("<div class='col-6'></div>")
dom.append("</div>")
html = HTML("".join(dom))
display(html)
return html
def build_altair_classification_plot(format_cls_result):
"""
Builds Altair bar chart for classification results.
Args:
format_cls_result (List): Output from `format_classification_results()`
"""
source = alt.pd.DataFrame(format_cls_result)
color_scale = alt.Scale(
domain=[record["type"] for record in format_cls_result],
range=["#00A3AF", "#F96702"],
)
c = (
alt.Chart(source)
.mark_bar(size=50)
.encode(
x=alt.X(
"percentage_start:Q", axis=alt.Axis(title="Style Distribution (%)")
),
x2=alt.X2("percentage_end:Q"),
color=alt.Color(
"type:N",
legend=alt.Legend(title="Attribute"),
scale=color_scale,
),
)
.properties(height=150)
)
return c
|