andrewrreed HF staff commited on
Commit
2e4274a
β€’
1 Parent(s): 663fe1d

add all application files

Browse files
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,13 +1,54 @@
1
  ---
2
- title: Exploring Intelligent Writing Assistance
3
- emoji: πŸƒ
4
- colorFrom: gray
5
- colorTo: yellow
6
  sdk: streamlit
7
  sdk_version: 1.10.0
8
- app_file: app.py
9
- pinned: false
 
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Exploring Intelligent Writing Assistance with Text Style Transfer
3
+ emoji: :twisted_rightwards_arrows:
4
+ colorFrom: blue
5
+ colorTo: green
6
  sdk: streamlit
7
  sdk_version: 1.10.0
8
+ app_file: apps/app.py
9
+ models: ["sentence-transformers/all-MiniLM-L6-v2", "cffl/bert-base-styleclassification-subjective-neutral", "cffl/bart-base-styletransfer-subjective-to-neutral", "cointegrated/roberta-base-formality", "prithivida/informal_to_formal_styletransfer"]
10
+ pinned: true
11
  license: apache-2.0
12
  ---
13
 
14
+ # Exploring Intelligent Writing Assistance
15
+
16
+ A demonstration of how the NLP task of _text style transfer_ can be applied to enhance the human writing experience using [HuggingFace Transformers](https://huggingface.co/) and [Streamlit](https://streamlit.io/).
17
+
18
+ ![](/static/images/app_screenshot.png)
19
+
20
+ > This repo accompanies Cloudera Fast Forward Labs' [blog series](https://blog.fastforwardlabs.com/2022/03/22/an-introduction-to-text-style-transfer.html) in which we explore the task of automatically neutralizing subjectivity bias in free text.
21
+
22
+ The goal of this application is to demonstrate how the NLP task of text style transfer can be applied to enhance the human writing experience. In this sense, we intend to peel back the curtains on how an intelligent writing assistant might function β€” walking through the logical steps needed to automatically re-style a piece of text (from informal-to-formal **or** subjective-to-neutral) while building up confidence in the model output.
23
+
24
+ Through the application, we emphasize the imperative for a human-in-the-loop user experience when designing natural language generation systems. We believe text style transfer has the potential to empower writers to better express themselves, but not by blindly generating text. Rather, generative models, in conjunction with interpretability methods, should be combined to help writers understand the nuances of linguistic style and suggest stylistic edits that may improve their writing.
25
+
26
+ ## Project Structure
27
+
28
+ ```
29
+ .
30
+ β”œβ”€β”€ LICENSE
31
+ β”œβ”€β”€ README.md
32
+ β”œβ”€β”€ apps
33
+ β”‚ β”œβ”€β”€ app.py
34
+ β”‚ β”œβ”€β”€ app_utils.py
35
+ β”‚ β”œβ”€β”€ data_utils.py
36
+ β”‚ └── visualization_utils.py
37
+ β”œβ”€β”€ requirements.txt
38
+ β”œβ”€β”€ scripts
39
+ β”‚ β”œβ”€β”€ download_models.py
40
+ β”‚ β”œβ”€β”€ install_dependencies.py
41
+ β”‚ └── launch_app.py
42
+ β”œβ”€β”€ setup.py
43
+ β”œβ”€β”€ src
44
+ β”‚ β”œβ”€β”€ __init__.py
45
+ β”‚ β”œβ”€β”€ content_preservation.py
46
+ β”‚ β”œβ”€β”€ style_classification.py
47
+ β”‚ β”œβ”€β”€ style_transfer.py
48
+ β”‚ └── transformer_interpretability.py
49
+ β”œβ”€β”€ static
50
+ β”‚ └── images
51
+ └── tests
52
+ β”œβ”€β”€ __init__.py
53
+ └── test_model_classes.py
54
+ ```
apps/.DS_Store ADDED
Binary file (6.15 kB). View file
 
apps/app.py ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ import pandas as pd
42
+ from PIL import Image
43
+ import streamlit as st
44
+ import streamlit.components.v1 as components
45
+
46
+ from apps.data_utils import (
47
+ DATA_PACKET,
48
+ format_classification_results,
49
+ )
50
+ from apps.app_utils import (
51
+ DisableableButton,
52
+ reset_page_progress_state,
53
+ get_cached_style_intensity_classifier,
54
+ get_cached_word_attributions,
55
+ get_sti_metric,
56
+ get_cps_metric,
57
+ generate_style_transfer,
58
+ )
59
+ from apps.visualization_utils import build_altair_classification_plot
60
+
61
+ # SESSION STATE UTILS
62
+ if "page_progress" not in st.session_state:
63
+ st.session_state.page_progress = 1
64
+
65
+ if "st_result" not in st.session_state:
66
+ st.session_state.st_result = False
67
+
68
+
69
+ # PAGE CONFIG
70
+ ffl_favicon = Image.open("static/images/cldr-favicon.ico")
71
+ st.set_page_config(
72
+ page_title="CFFL: Text Style Transfer",
73
+ page_icon=ffl_favicon,
74
+ layout="centered",
75
+ initial_sidebar_state="expanded",
76
+ )
77
+
78
+ # SIDEBAR
79
+ ffl_logo = Image.open("static/images/ffllogo2@1x.png")
80
+ st.sidebar.image(ffl_logo)
81
+
82
+ st.sidebar.write(
83
+ "This prototype accompanies our [Text Style Transfer](https://blog.fastforwardlabs.com/2022/03/22/an-introduction-to-text-style-transfer.html)\
84
+ blog series in which we explore the task of automatically neutralizing subjectivity bias in free text."
85
+ )
86
+
87
+ st.sidebar.markdown("## Select a style attribute")
88
+ style_attribute = st.sidebar.selectbox(
89
+ "What style would you like to transfer between?", options=DATA_PACKET.keys()
90
+ )
91
+ STYLE_ATTRIBUTE_DATA = DATA_PACKET[style_attribute]
92
+
93
+ st.sidebar.markdown("## Start over")
94
+ st.sidebar.caption(
95
+ "This application is intended to be run sequentially from top to bottom. If you wish to alter selections after \
96
+ advancing through the app, push the button below to start fresh from the beginning."
97
+ )
98
+ st.sidebar.button("Restart from beginning", on_click=reset_page_progress_state)
99
+
100
+ # MAIN CONTENT
101
+ st.markdown("# Exploring Intelligent Writing Assistance")
102
+
103
+ st.write(
104
+ """
105
+ The goal of this application is to demonstrate how the NLP task of _text style transfer_ can be applied to enhance the human writing experience.
106
+ In this sense, we intend to peel back the curtains on how an intelligent writing assistant might function β€” walking through the logical steps needed to
107
+ automatically re-style a piece of text while building up confidence in the model output.
108
+
109
+ We emphasize the imperative for a human-in-the-loop user experience when designing natural language generation systems. We believe text style
110
+ transfer has the potential to empower writers to better express themselves, but not by blindly generating text. Rather, generative models, in conjunction with
111
+ interpretability methods, should be combined to help writers understand the nuances of linguistic style and suggest stylistic edits that _may_ improve their writing.
112
+
113
+ Select a style attribute from the sidebar and enter some text below to get started!
114
+ """
115
+ )
116
+
117
+ ## 1. INPUT EXAMPLE
118
+ if st.session_state.page_progress > 0:
119
+ st.write("### 1. Input some text")
120
+
121
+ with st.container():
122
+
123
+ col1_1, col1_2 = st.columns([1, 3])
124
+ with col1_1:
125
+ input_type = st.radio(
126
+ "Type your own or choose from a preset example",
127
+ ("Choose preset", "Enter text"),
128
+ horizontal=False,
129
+ )
130
+ with col1_2:
131
+ if input_type == "Enter text":
132
+ text_sample = st.text_input(
133
+ f"Enter some text to modify style from {style_attribute}",
134
+ help="You can also select one of our preset examples by toggling the radio button to the left.",
135
+ )
136
+ else:
137
+ option = st.selectbox(
138
+ f"Select a preset example to modify style from {style_attribute}",
139
+ [
140
+ f"Example {i+1}"
141
+ for i in range(len(STYLE_ATTRIBUTE_DATA.examples))
142
+ ],
143
+ help="You can also enter your own text by toggling the radio button to the left.",
144
+ )
145
+
146
+ idx_key = int(option.split(" ")[-1]) - 1
147
+ text_sample = STYLE_ATTRIBUTE_DATA.examples[idx_key]
148
+
149
+ st.text_area(
150
+ "Preview Text",
151
+ value=text_sample,
152
+ placeholder="Enter some text above or toggle to choose a preset!",
153
+ disabled=True,
154
+ )
155
+
156
+ if text_sample != "":
157
+ db1 = DisableableButton(1, "Let's go!")
158
+ db1.create_enabled_button()
159
+
160
+ ## 2. CLASSIFY INPUT
161
+ if st.session_state.page_progress > 1:
162
+ db1.disable()
163
+
164
+ st.write("### 2. Detect style")
165
+ st.write(
166
+ f"""
167
+ Before we can transfer style, we need to ensure the input text isn't already of the target style! To do so,
168
+ we classify the sample text with a model that has been fine-tuned to differentiate between
169
+ {STYLE_ATTRIBUTE_DATA.attribute_AND_string} tones.
170
+
171
+ In a product setting, you could imagine this style detection process running continuously inside your favorite word processor as you write,
172
+ prompting you for action when it detects language that is at odds with your desired tone of voice.
173
+ """
174
+ )
175
+
176
+ with st.spinner("Detecting style, hang tight!"):
177
+
178
+ sic = get_cached_style_intensity_classifier(style_data=STYLE_ATTRIBUTE_DATA)
179
+ cls_result = sic.score(text_sample)
180
+
181
+ cls_result_df = pd.DataFrame(
182
+ cls_result[0]["distribution"],
183
+ columns=["Score"],
184
+ index=[v for k, v in sic.pipeline.model.config.id2label.items()],
185
+ )
186
+
187
+ with st.container():
188
+
189
+ format_cls_result = format_classification_results(
190
+ id2label=sic.pipeline.model.config.id2label, cls_result=cls_result
191
+ )
192
+ st.markdown("##### Distribution Between Style Classes")
193
+ chart = build_altair_classification_plot(format_cls_result)
194
+ st.altair_chart(chart.interactive(), use_container_width=True)
195
+
196
+ st.markdown(
197
+ f"""
198
+ - **:hugging_face: Model:** [{STYLE_ATTRIBUTE_DATA.cls_model_path}]({STYLE_ATTRIBUTE_DATA.build_model_url("cls")})
199
+ - **Input Text:** *"{text_sample}"*
200
+ - **Classification Result:** \t {cls_result[0]["label"].capitalize()} ({round(cls_result[0]["score"]*100, 2)}%)
201
+ """
202
+ )
203
+ st.write(" ")
204
+
205
+ if cls_result[0]["label"].lower() != STYLE_ATTRIBUTE_DATA.target_attribute:
206
+ st.info(
207
+ f"""
208
+ **Looks like we have room for improvement!**
209
+
210
+ The distribution of classification scores suggests that the input text is more {STYLE_ATTRIBUTE_DATA.attribute_THAN_string}. Therefore,
211
+ an automated style transfer may improve our intended tone of voice."""
212
+ )
213
+ db2 = DisableableButton(2, "Let's see why")
214
+ db2.create_enabled_button()
215
+ else:
216
+ st.success(
217
+ f"""**No work to be done!** \n\n\n The distribution of classification scores suggests that the input text is less \
218
+ {STYLE_ATTRIBUTE_DATA.attribute_THAN_string}. Therefore, there's no need to transfer style. \
219
+ Enter a different text prompt or select one of the preset examples to re-run the analysis with."""
220
+ )
221
+
222
+ ## 3. Here's why
223
+ if st.session_state.page_progress > 2:
224
+ db2.disable()
225
+ st.write("### 3. Interpret the classification result")
226
+ st.write(
227
+ f"""
228
+ Interpreting our model's output is a crucial practice that helps build trust and justify taking real-world action from the
229
+ model predictions. In this case, we apply a popular model interpretability technique called [Integrated Gradients](https://arxiv.org/pdf/1703.01365.pdf)
230
+ to the Transformer-based classifier to explain the model's prediction in terms of its features."""
231
+ )
232
+
233
+ with st.spinner("Interpreting the prediction, hang tight!"):
234
+ word_attributions_visual = get_cached_word_attributions(
235
+ text_sample=text_sample, style_data=STYLE_ATTRIBUTE_DATA
236
+ )
237
+ components.html(html=word_attributions_visual, height=200, scrolling=True)
238
+
239
+ st.write(
240
+ f"""
241
+ The visual above displays word attributions using the [Transformers Interpret](https://github.com/cdpierse/transformers-interpret) library.
242
+ Positive attribution values (green) indicate tokens that contribute positively towards the
243
+ predicted class ({STYLE_ATTRIBUTE_DATA.source_attribute}), while negative values (red) indicate tokens that contribute negatively towards the predicted class.
244
+
245
+ Visualizing word attributions is a helpful way to build intuition about what makes the input text _{STYLE_ATTRIBUTE_DATA.source_attribute}_!"""
246
+ )
247
+ db3 = DisableableButton(3, "Next")
248
+ db3.create_enabled_button()
249
+
250
+
251
+ ## 4. SUGGEST GENERATED EDIT
252
+ if st.session_state.page_progress > 3:
253
+ db3.disable()
254
+
255
+ st.write("### 4. Generate a suggestion")
256
+ st.write(
257
+ f"Now that we've verified the input text is in fact *{STYLE_ATTRIBUTE_DATA.source_attribute}* and understand why that's the case, we can utilize a \
258
+ text style transfer model to generate a suggested replacement that retains the same semantic meaning, but achieves the *{STYLE_ATTRIBUTE_DATA.target_attribute}* target style.\
259
+ \n\n Expand the accordian below to toggle generation parameters, then click the button to transfer style!"
260
+ )
261
+
262
+ with st.expander("Toggle generation parameters"):
263
+
264
+ # st.markdown("##### Text generation parameters")
265
+ st.write("**max_gen_length**")
266
+ max_gen_length = st.slider(
267
+ "Whats the maximum generation length desired?", 1, 250, 200, 10
268
+ )
269
+ st.write("**num_beams**")
270
+ num_beams = st.slider(
271
+ "How many beams to use for beam-search decoding?", 1, 8, 4
272
+ )
273
+ st.write("**temperature**")
274
+ temperature = st.slider(
275
+ "What sensitivity value to model next token probabilities?",
276
+ 0.0,
277
+ 1.0,
278
+ 1.0,
279
+ )
280
+
281
+ st.markdown(
282
+ f"""
283
+ **:hugging_face: Model:** [{STYLE_ATTRIBUTE_DATA.seq2seq_model_path}]({STYLE_ATTRIBUTE_DATA.build_model_url("seq2seq")})
284
+ """
285
+ )
286
+
287
+ col4_1, col4_2, col4_3 = st.columns([1, 5, 4])
288
+ with col4_2:
289
+ st.markdown(
290
+ f"""
291
+ - **Max Generation Length:** {max_gen_length}
292
+ - **Number of Beams:** {num_beams}
293
+ - **Temperature:** {temperature}
294
+ """
295
+ )
296
+ with col4_3:
297
+ with st.container():
298
+ st.write("")
299
+ st.button(
300
+ "Generate style transfer",
301
+ key="generate_text",
302
+ on_click=generate_style_transfer,
303
+ kwargs={
304
+ "text_sample": text_sample,
305
+ "style_data": STYLE_ATTRIBUTE_DATA,
306
+ "max_gen_length": max_gen_length,
307
+ "num_beams": num_beams,
308
+ "temperature": temperature,
309
+ },
310
+ )
311
+
312
+ if st.session_state.st_result:
313
+ st.warning(
314
+ f"""**{STYLE_ATTRIBUTE_DATA.source_attribute.capitalize()} Input:** "{text_sample}" """
315
+ )
316
+ st.info(
317
+ f"""
318
+ **{STYLE_ATTRIBUTE_DATA.target_attribute.capitalize()} Suggestion:** "{st.session_state.st_result[0]}" """
319
+ )
320
+ db4 = DisableableButton(4, "Next")
321
+ db4.create_enabled_button()
322
+
323
+ ## 5. EVALUATE THE SUGGESTION
324
+ if st.session_state.page_progress > 4:
325
+ db4.disable()
326
+ st.write("### 5. Evaluate the suggestion")
327
+ st.markdown(
328
+ """
329
+ Blindly prompting a writer with style suggestions without first checking quality would make for a noisy, error-prone product
330
+ with a poor user experience. Ultimately, we only want to suggest high quality edits. But what makes for a suggestion-worthy edit?
331
+
332
+ A comprehensive quality evaluation for text style transfer output should consider three criteria:
333
+ 1. **Style strength** - To what degree does the generated text achieve the target style?
334
+ 2. **Content preservation** - To what degree does the generated text retain the semantic meaning of the source text?
335
+ 3. **Fluency** - To what degree does the generated text appear as if it were produced naturally by a human?
336
+
337
+ Below, we apply automated evaluation metrics - _Style Transfer Intensity (STI)_ & _Content Preservation Score (CPS)_ - to
338
+ measure the first two of these criteria by comparing the input text to the generated suggestion.
339
+ """
340
+ )
341
+
342
+ with st.spinner("Evaluating text style transfer, hang tight!"):
343
+
344
+ sti = get_sti_metric(
345
+ input_text=text_sample,
346
+ output_text=st.session_state.st_result[0],
347
+ style_data=STYLE_ATTRIBUTE_DATA,
348
+ )
349
+ cps = get_cps_metric(
350
+ input_text=text_sample,
351
+ output_text=st.session_state.st_result[0],
352
+ style_data=STYLE_ATTRIBUTE_DATA,
353
+ )
354
+
355
+ st.markdown(
356
+ """<hr style="height:2px;border:none;color:#333;background-color:#333;" /> """,
357
+ unsafe_allow_html=True,
358
+ )
359
+
360
+ col5_1, col5_2, col5_3 = st.columns([3, 1, 3])
361
+
362
+ with col5_1:
363
+ st.metric(
364
+ label="Style Transfer Intensity (STI)",
365
+ value=f"{round(sti[0]*100,2)}%",
366
+ )
367
+ st.caption(
368
+ f"""
369
+ STI compares the style class distributions (determined by the [style classifier]({STYLE_ATTRIBUTE_DATA.build_model_url("cls")}))
370
+ between the input text and generated suggestion using Earth Mover's Distance. Therefore, STI can be thought of as the percentage of the possible target style distribution
371
+ that was captured during the transfer.
372
+ """
373
+ )
374
+
375
+ with col5_3:
376
+ st.metric(
377
+ label="Content Preservation Score (CPS)",
378
+ value=f"{round(cps[0]*100,2)}%",
379
+ )
380
+ st.caption(
381
+ f"""
382
+ CPS compares the latent space embeddings (determined by [SentenceBERT]({STYLE_ATTRIBUTE_DATA.build_model_url("sbert")}))
383
+ between the input text and generated suggestion using cosine similarity. Therefore, CPS can be thought of as the percentage of content that was perserved
384
+ during the style transfer.
385
+ """
386
+ )
apps/app_utils.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from typing import List
42
+
43
+ import tokenizers
44
+ import streamlit as st
45
+
46
+ from src.style_transfer import StyleTransfer
47
+ from src.style_classification import StyleIntensityClassifier
48
+ from src.content_preservation import ContentPreservationScorer
49
+ from src.transformer_interpretability import InterpretTransformer
50
+ from apps.data_utils import StyleAttributeData, string_to_list_string
51
+
52
+ # CALLBACKS
53
+ def increment_page_progress():
54
+ st.session_state.page_progress += 1
55
+
56
+
57
+ def reset_page_progress_state():
58
+ del st.session_state.st_result
59
+ st.session_state.page_progress = 1
60
+
61
+
62
+ # UTILITY CLASSES
63
+ class DisableableButton:
64
+ """
65
+ Utility class for creating "disable-able" buttons upon click.
66
+
67
+ We initialize an empty container, then update that container with buttons
68
+ upon calling `create_enabled_button` and `disable` methods where clicking
69
+ is enabled and then disabled, respectively.
70
+
71
+ """
72
+
73
+ def __init__(self, button_number, button_text):
74
+ self.button_number = button_number
75
+ self.button_text = button_text
76
+
77
+ def _init_placeholder_container(self):
78
+ self.ph = st.empty()
79
+
80
+ def create_enabled_button(self):
81
+ self._init_placeholder_container()
82
+ self.ph.button(
83
+ self.button_text,
84
+ on_click=increment_page_progress,
85
+ key=f"ph{self.button_number}_before",
86
+ disabled=False,
87
+ )
88
+
89
+ def disable(self):
90
+ self.ph.button(
91
+ self.button_text, key=f"ph{self.button_number}_after", disabled=True
92
+ )
93
+
94
+
95
+ # CACHED FUNCTIONS
96
+ @st.cache(
97
+ hash_funcs={tokenizers.Tokenizer: lambda _: None},
98
+ allow_output_mutation=True,
99
+ show_spinner=False,
100
+ )
101
+ def get_cached_style_intensity_classifier(
102
+ style_data: StyleAttributeData,
103
+ ) -> StyleIntensityClassifier:
104
+ """
105
+ Return a cached style classifier.
106
+
107
+ This function overwrites the existing model's config values for
108
+ `id2label` and `label2id`.
109
+
110
+ Args:
111
+ style_data (StyleAttributeData)
112
+
113
+ Returns:
114
+ StyleIntensityClassifier
115
+ """
116
+ sic = StyleIntensityClassifier(style_data.cls_model_path)
117
+
118
+ # create or overwrite id-label lookup in model config
119
+ sic.pipeline.model.config.__dict__["id2label"] = {
120
+ i: a
121
+ for i, a in enumerate(
122
+ [
123
+ style_data.source_attribute.capitalize(),
124
+ style_data.target_attribute.capitalize(),
125
+ ]
126
+ )
127
+ }
128
+ sic.pipeline.model.config.__dict__["label2id"] = {
129
+ v: k for k, v in sic.pipeline.model.config.__dict__["id2label"].items()
130
+ }
131
+
132
+ return sic
133
+
134
+
135
+ @st.cache(
136
+ hash_funcs={tokenizers.Tokenizer: lambda _: None},
137
+ allow_output_mutation=True,
138
+ show_spinner=False,
139
+ )
140
+ def get_cached_word_attributions(
141
+ text_sample: str, style_data: StyleAttributeData
142
+ ) -> str:
143
+ """
144
+ Calculated word attributions and return HTML visual.
145
+
146
+ This function overwrites the existing model's config values for
147
+ `id2label` and `label2id`.
148
+
149
+ Args:
150
+ text_sample (str)
151
+ style_data (StyleAttributeData)
152
+
153
+ Returns:
154
+ str
155
+ """
156
+ it = InterpretTransformer(cls_model_identifier=style_data.cls_model_path)
157
+
158
+ # create or overwrite id-label lookup in model config
159
+ it.explainer.id2label = {
160
+ i: a
161
+ for i, a in enumerate(
162
+ [
163
+ style_data.source_attribute.capitalize(),
164
+ style_data.target_attribute.capitalize(),
165
+ ]
166
+ )
167
+ }
168
+ it.explainer.label2id = {v: k for k, v in it.explainer.id2label.items()}
169
+ return it.visualize_feature_attribution_scores(text_sample).data
170
+
171
+
172
+ @st.cache(
173
+ hash_funcs={tokenizers.Tokenizer: lambda _: None},
174
+ allow_output_mutation=True,
175
+ show_spinner=False,
176
+ )
177
+ def get_sti_metric(
178
+ input_text: str, output_text: str, style_data: StyleAttributeData
179
+ ) -> List[float]:
180
+ """
181
+ Calculate Style Transfer Intensity (STI)
182
+
183
+ Args:
184
+ input_text (str)
185
+ output_text (str)
186
+ style_data (StyleAttributeData)
187
+
188
+ Returns:
189
+ List[float]
190
+ """
191
+ sti = StyleIntensityClassifier(
192
+ model_identifier=style_data.cls_model_path,
193
+ )
194
+ return sti.calculate_transfer_intensity_fraction(
195
+ string_to_list_string(input_text), string_to_list_string(output_text)
196
+ )
197
+
198
+
199
+ @st.cache(
200
+ hash_funcs={tokenizers.Tokenizer: lambda _: None},
201
+ allow_output_mutation=True,
202
+ show_spinner=False,
203
+ )
204
+ def get_cps_metric(
205
+ input_text: str, output_text: str, style_data: StyleAttributeData
206
+ ) -> List[float]:
207
+ """
208
+ Calculate Content Preservation Score (CPS)
209
+
210
+ Args:
211
+ input_text (str)
212
+ output_text (str)
213
+ style_data (StyleAttributeData)
214
+
215
+ Returns:
216
+ List[float]
217
+ """
218
+ cps = ContentPreservationScorer(
219
+ cls_model_identifier=style_data.cls_model_path,
220
+ sbert_model_identifier=style_data.sbert_model_path,
221
+ )
222
+ return cps.calculate_content_preservation_score(
223
+ string_to_list_string(input_text),
224
+ string_to_list_string(output_text),
225
+ mask_type="none",
226
+ )
227
+
228
+
229
+ def generate_style_transfer(
230
+ text_sample: str,
231
+ style_data: StyleAttributeData,
232
+ max_gen_length: int,
233
+ num_beams: int,
234
+ temperature: int,
235
+ ):
236
+ """
237
+ Run inference on seq2seq model and persist result to
238
+ `session_state` varaible.
239
+
240
+ Args:
241
+ text_sample (str): _description_
242
+ style_data (StyleAttributeData): _description_
243
+ max_gen_length (int): _description_
244
+ num_beams (int): _description_
245
+ temperature (int): _description_
246
+ """
247
+ with st.spinner("Transferring style, hang tight!"):
248
+
249
+ generate_kwargs = {
250
+ "max_gen_length": max_gen_length,
251
+ "num_beams": num_beams,
252
+ "temperature": temperature,
253
+ }
254
+
255
+ st_class = StyleTransfer(
256
+ model_identifier=style_data.seq2seq_model_path,
257
+ **generate_kwargs,
258
+ )
259
+
260
+ st_result = st_class.transfer(text_sample)
261
+
262
+ st.session_state.st_result = st_result
apps/data_utils.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ import os
42
+ from typing import List
43
+ from collections import defaultdict
44
+ from dataclasses import dataclass
45
+
46
+ import numpy as np
47
+
48
+
49
+ @dataclass
50
+ class StyleAttributeData:
51
+ source_attribute: str
52
+ target_attribute: str
53
+ examples: List[str]
54
+ cls_model_path: str
55
+ seq2seq_model_path: str
56
+ sbert_model_path: str = "sentence-transformers/all-MiniLM-L6-v2"
57
+ hf_base_url: str = "https://huggingface.co/"
58
+
59
+ def __post_init__(self):
60
+ self._make_attribute_selection_string()
61
+ self._make_attribute_AND_string()
62
+ self._make_attribute_THAN_string()
63
+
64
+ def _make_attribute_selection_string(self):
65
+ self.attribute_selecting_string = (
66
+ f"{self.source_attribute}-{self.target_attribute}"
67
+ )
68
+
69
+ def _make_attribute_AND_string(self):
70
+ self.attribute_AND_string = (
71
+ f"**{self.source_attribute}** and **{self.target_attribute}**"
72
+ )
73
+
74
+ def _make_attribute_THAN_string(self):
75
+ self.attribute_THAN_string = (
76
+ f"**{self.source_attribute}** than **{self.target_attribute}**"
77
+ )
78
+
79
+ def build_model_url(self, model_type: str):
80
+ """
81
+ Build a complete HuggingFace url for the given `model_type`.
82
+
83
+ Args:
84
+ model_type (str): "cls", "seq2seq", "sbert"
85
+ """
86
+ attr_name = f"{model_type}_model_path"
87
+ return os.path.join(self.hf_base_url, getattr(self, attr_name))
88
+
89
+
90
+ # instantiate data classes & collect all data class instances
91
+ DATA_PACKET = {
92
+ "subjective-to-neutral": StyleAttributeData(
93
+ source_attribute="subjective",
94
+ target_attribute="neutral",
95
+ examples=[
96
+ "another strikingly elegant four-door design for the bentley s3 continental came from james.",
97
+ "the band plays an engaging and contagious rhythm known as brega pop and calypso.",
98
+ "chemical abstracts service (cas), a prominent division of the american chemical society, is the world's leading source of chemical information.",
99
+ "the final fight scene is with the martial arts great, master ninja sho kosugi.",
100
+ ],
101
+ cls_model_path="cffl/bert-base-styleclassification-subjective-neutral",
102
+ seq2seq_model_path="cffl/bart-base-styletransfer-subjective-to-neutral",
103
+ ),
104
+ "informal-to-formal": StyleAttributeData(
105
+ source_attribute="informal",
106
+ target_attribute="formal",
107
+ examples=[
108
+ "that was funny LOL",
109
+ "btw - ur avatar looks familiar",
110
+ "i loooooooooooooooooooooooove going to the movies.",
111
+ "haha, thatd be dope",
112
+ ],
113
+ cls_model_path="cointegrated/roberta-base-formality",
114
+ seq2seq_model_path="prithivida/informal_to_formal_styletransfer",
115
+ ),
116
+ }
117
+
118
+
119
+ def format_classification_results(id2label: dict, cls_result):
120
+ """
121
+ Formats classification output to be plotted using Altair.
122
+
123
+ Args:
124
+ id2label (dict): Transformer model's label dictionary
125
+ cls_result (List): Classification pipeline output
126
+ """
127
+
128
+ labels = [v for k, v in id2label.items()]
129
+
130
+ format_cls_result = []
131
+
132
+ for i in range(len(labels)):
133
+ temp = defaultdict()
134
+ temp["type"] = labels[i].capitalize()
135
+ temp["value"] = round(cls_result[0]["distribution"][i], 4)
136
+
137
+ if i == 0:
138
+ temp["percentage_start"] = 0
139
+ temp["percentage_end"] = temp["value"]
140
+ else:
141
+ temp["percentage_start"] = 1 - temp["value"]
142
+ temp["percentage_end"] = 1
143
+
144
+ format_cls_result.append(temp)
145
+
146
+ return format_cls_result
147
+
148
+
149
+ def string_to_list_string(text: str):
150
+ return np.expand_dims(np.array(text), axis=0).tolist()
apps/visualization_utils.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from typing import Iterable
42
+
43
+ import altair as alt
44
+ from captum.attr._utils.visualization import (
45
+ VisualizationDataRecord,
46
+ format_word_importances,
47
+ _get_color,
48
+ )
49
+
50
+ try:
51
+ from IPython.display import display, HTML
52
+
53
+ HAS_IPYTHON = True
54
+ except ImportError:
55
+ HAS_IPYTHON = False
56
+
57
+ def format_classname(classname):
58
+ return f'<td>{classname}</td>'
59
+
60
+ def visualize_text(
61
+ datarecords: Iterable[VisualizationDataRecord], legend: bool = True
62
+ ) -> "HTML": # In quotes because this type doesn't exist in standalone mode
63
+ assert HAS_IPYTHON, (
64
+ "IPython must be available to visualize text. "
65
+ "Please run 'pip install ipython'."
66
+ )
67
+
68
+ dom = []
69
+ dom.append(
70
+ '<head><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"></head>'
71
+ )
72
+ dom.append("""<table width:100; class="table">""")
73
+ rows = [
74
+ "<thead>"
75
+ "<tr>"
76
+ "<th scope='col'><span class='text-nowrap'>Predicted Label</span></th>"
77
+ "<th scope='col'><span class='text-nowrap'>Attribution Score</span></th>"
78
+ "<th scope='col'><span class='text-nowrap'>Feature Importance</span></th>"
79
+ "</tr>"
80
+ "</thead>"
81
+ ]
82
+ for datarecord in datarecords:
83
+ rows.append(
84
+ "".join(
85
+ [
86
+ "<tbody>",
87
+ "<tr>",
88
+ format_classname(
89
+ f"{datarecord.pred_class.capitalize()}"
90
+ ),
91
+ format_classname(f"{round(datarecord.attr_score.item(), 2)}"),
92
+ format_word_importances(
93
+ datarecord.raw_input_ids, datarecord.word_attributions
94
+ ),
95
+ "<tr>",
96
+ "</tbody>",
97
+ ]
98
+ )
99
+ )
100
+
101
+ dom.append("".join(rows))
102
+ dom.append("</table>")
103
+
104
+ if legend:
105
+ dom.append("<div class='row'>")
106
+ dom.append("<div class='col-6'>")
107
+ dom.append("<b>Legend: </b>")
108
+
109
+ for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
110
+ dom.append(
111
+ '<span style="display: inline-block; width: 10px; height: 10px; \
112
+ border: 1px solid; background-color: \
113
+ {value}"></span> {label} '.format(
114
+ value=_get_color(value), label=label
115
+ )
116
+ )
117
+ dom.append("</div>")
118
+ dom.append("<div class='col-6'></div>")
119
+
120
+ dom.append("</div>")
121
+
122
+ html = HTML("".join(dom))
123
+ display(html)
124
+
125
+ return html
126
+
127
+
128
+ def build_altair_classification_plot(format_cls_result):
129
+ """
130
+ Builds Altair bar chart for classification results.
131
+
132
+ Args:
133
+ format_cls_result (List): Output from `format_classification_results()`
134
+ """
135
+ source = alt.pd.DataFrame(format_cls_result)
136
+
137
+ color_scale = alt.Scale(
138
+ domain=[record["type"] for record in format_cls_result],
139
+ range=["#00A3AF", "#F96702"],
140
+ )
141
+
142
+ c = (
143
+ alt.Chart(source)
144
+ .mark_bar(size=50)
145
+ .encode(
146
+ x=alt.X(
147
+ "percentage_start:Q", axis=alt.Axis(title="Style Distribution (%)")
148
+ ),
149
+ x2=alt.X2("percentage_end:Q"),
150
+ color=alt.Color(
151
+ "type:N",
152
+ legend=alt.Legend(title="Attribute"),
153
+ scale=color_scale,
154
+ ),
155
+ )
156
+ .properties(height=150)
157
+ )
158
+
159
+ return c
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==1.12.0
2
+ transformers==4.20.1
3
+ pyemd==0.5.1
4
+ streamlit==1.10.0
5
+ attrs==21.4.0
6
+ jinja2==3.1.2
7
+ jsonschema==4.7.2
8
+ pyrsistent==0.18.1
9
+ transformers-interpret==0.7.2
10
+ -e .
scripts/download_models.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from apps.data_utils import DATA_PACKET
42
+ from src.style_transfer import StyleTransfer
43
+ from src.style_classification import StyleIntensityClassifier
44
+ from src.content_preservation import ContentPreservationScorer
45
+
46
+
47
+ def load_and_cache_HF_models(style_data_packet):
48
+ """
49
+ This utility function is used to download and cache models needed for all style
50
+ attributes in `apps.data_utils.DATA_PACKET`
51
+
52
+ Args:
53
+ style_data_packet (dict)
54
+ """
55
+
56
+ for style_data in style_data_packet.keys():
57
+ try:
58
+ st = StyleTransfer(model_identifier=style_data.seq2seq_model_path)
59
+ sic = StyleIntensityClassifier(style_data.cls_model_path)
60
+ cps = ContentPreservationScorer(
61
+ cls_model_identifier=style_data.cls_model_path,
62
+ sbert_model_identifier=style_data.sbert_model_path,
63
+ )
64
+
65
+ del st, sic, cps
66
+ except Exception as e:
67
+ print(e)
68
+
69
+ if __name__=="__main__":
70
+ load_and_cache_HF_models(DATA_PACKET)
scripts/install_dependencies.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ !pip3 install -r requirements.txt && python3 scripts/download_models.py
scripts/launch_app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ !streamlit run apps/app.py --server.port $CDSW_APP_PORT --server.address 127.0.0.1
setup.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from setuptools import setup, find_packages
42
+
43
+ setup(
44
+ name="text-style-transfer",
45
+ version="0.1.0",
46
+ description="A library and demo application for the NLP task of text style transfer.",
47
+ author="Andrew Reed",
48
+ author_email="andrew.reed.r@gmail.com",
49
+ packages=find_packages(),
50
+ )
src/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/__init__.py ADDED
File without changes
src/content_preservation.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from typing import List
42
+
43
+ import torch
44
+ import pandas as pd
45
+ from transformers import (
46
+ AutoTokenizer,
47
+ AutoModel,
48
+ AutoModelForSequenceClassification,
49
+ )
50
+
51
+
52
+ class ContentPreservationScorer:
53
+ """
54
+ Utility for calculating Content Preservation Score between
55
+ two pieces of text (i.e. input and output of TST model).
56
+
57
+ This custom evaluation metric aims to quantify content preservation by
58
+ first modifying text to remove all style-related tokens leaving just
59
+ content related tokens behind. Style tokens are determind on a
60
+ sentence-by-sentence basis by extracting out salient token attributions
61
+ from a trained Style Classifier (BERT) so contextual information is
62
+ perserved in the attribution scores. Style tokens are then masked/removed
63
+ from the text. We pass the style-less sentences through a pre-trained,
64
+ but not fine-tuned SentenceBert model to compute sentence embeddings.
65
+ Cosine similarity on the embeddings produces a score that should represent
66
+ content preservation.
67
+
68
+ PSUEDO-CODE: (higher score is better preservation)
69
+ 1. mask out style tokens for input and output text (1str)
70
+ 2. get SBERT embedddings for each (multi)
71
+ 3. calculate cosine similarity (multi pairs)
72
+
73
+ Attributes:
74
+ cls_model_identifier (str)
75
+ sbert_model_identifier (str)
76
+
77
+ """
78
+
79
+ def __init__(self, cls_model_identifier: str, sbert_model_identifier: str):
80
+
81
+ self.cls_model_identifier = cls_model_identifier
82
+ self.sbert_model_identifier = sbert_model_identifier
83
+ self.device = (
84
+ torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
85
+ )
86
+
87
+ self._initialize_hf_artifacts()
88
+
89
+ def _initialize_hf_artifacts(self):
90
+ """
91
+ Initialize a HuggingFace artifacts (tokenizer and model) according
92
+ to the provided identifiers for both SBert and the classification model.
93
+ Then initialize the word attribution explainer with the HF model+tokenizer.
94
+
95
+ """
96
+
97
+ # sbert
98
+ self.sbert_tokenizer = AutoTokenizer.from_pretrained(
99
+ self.sbert_model_identifier
100
+ )
101
+ self.sbert_model = AutoModel.from_pretrained(self.sbert_model_identifier)
102
+
103
+ # classifer
104
+ self.cls_tokenizer = AutoTokenizer.from_pretrained(self.cls_model_identifier)
105
+ self.cls_model = AutoModelForSequenceClassification.from_pretrained(
106
+ self.cls_model_identifier
107
+ )
108
+ self.cls_model.to(self.device)
109
+
110
+ def compute_sentence_embeddings(self, input_text: List[str]) -> torch.Tensor:
111
+ """
112
+ Compute sentence embeddings for each sentence provided a list of text strings.
113
+
114
+ Args:
115
+ input_text (List[str]) - list of input sentences to encode
116
+
117
+ Returns:
118
+ sentence_embeddings (torch.Tensor)
119
+
120
+ """
121
+ # tokenize sentences
122
+ encoded_input = self.sbert_tokenizer(
123
+ input_text,
124
+ padding=True,
125
+ truncation=True,
126
+ max_length=256,
127
+ return_tensors="pt",
128
+ )
129
+
130
+ # to device
131
+ self.sbert_model.eval()
132
+ self.sbert_model.to(self.device)
133
+ encoded_input = {k: v.to(self.device) for k, v in encoded_input.items()}
134
+
135
+ # compute token embeddings
136
+ with torch.no_grad():
137
+ model_output = self.sbert_model(**encoded_input)
138
+
139
+ return (
140
+ self.mean_pooling(model_output, encoded_input["attention_mask"])
141
+ .detach()
142
+ .cpu()
143
+ )
144
+
145
+ def calculate_content_preservation_score(
146
+ self,
147
+ input_text: List[str],
148
+ output_text: List[str],
149
+ threshold: float = 0.3,
150
+ mask_type: str = "pad",
151
+ return_all: bool = False,
152
+ ) -> List[float]:
153
+ """
154
+ Calcualates the content preservation score (CPS) between two pieces of text.
155
+
156
+ Args:
157
+ input_text (list) - list of input texts with indicies corresponding
158
+ to counterpart in output_text
159
+ ouptput_text (list) - list of output texts with indicies corresponding
160
+ to counterpart in input_text
161
+ return_all (bool) - If true, return dict containing intermediate
162
+ text with style masking applied, along with scores
163
+ mask_type (str) - "pad", "remove", or "none"
164
+
165
+ Returns:
166
+ A list of floats with corresponding content preservation scores.
167
+
168
+ PSUEDO-CODE: (higher score is better preservation)
169
+ 1. mask out style tokens for input and output text (1str)
170
+ 2. get SBERT embedddings for each (multi)
171
+ 3. calculate cosine similarity (multi pairs)
172
+ """
173
+ if len(input_text) != len(output_text):
174
+ raise ValueError(
175
+ "input_text and output_text must be of same length with corresponding items"
176
+ )
177
+
178
+ if mask_type != "none":
179
+ # Mask out style tokens
180
+ masked_input_text = [
181
+ self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold)
182
+ for text in input_text
183
+ ]
184
+ masked_output_text = [
185
+ self.mask_style_tokens(text, mask_type=mask_type, threshold=threshold)
186
+ for text in output_text
187
+ ]
188
+
189
+ # Compute SBert embeddings
190
+ input_embeddings = self.compute_sentence_embeddings(masked_input_text)
191
+ output_embeddings = self.compute_sentence_embeddings(masked_output_text)
192
+ else:
193
+ # Compute SBert embeddings on unmasked text
194
+ input_embeddings = self.compute_sentence_embeddings(input_text)
195
+ output_embeddings = self.compute_sentence_embeddings(output_text)
196
+
197
+ # Calculate cosine similarity
198
+ scores = self.cosine_similarity(input_embeddings, output_embeddings)
199
+
200
+ if return_all:
201
+ output = {
202
+ "scores": scores,
203
+ "masked_input_text": masked_input_text
204
+ if mask_type != "none"
205
+ else input_text,
206
+ "masked_output_text": masked_output_text
207
+ if mask_type != "none"
208
+ else output_text,
209
+ }
210
+ return output
211
+ else:
212
+ return scores
213
+
214
+ def calculate_feature_attribution_scores(
215
+ self, text: str, class_index: int = 0, as_norm: bool = False
216
+ ) -> List[tuple]:
217
+ """
218
+ Calcualte feature attributions using integrated gradients by passing
219
+ a string of text as input.
220
+
221
+ Args:
222
+ text (str) - text to get attributions for
223
+ class_index (int) - Optional output index to provide attributions for
224
+
225
+ """
226
+ attributions = self.explainer(text, index=class_index)
227
+
228
+ if as_norm:
229
+ return self.format_feature_attribution_scores(attributions)
230
+
231
+ return attributions
232
+
233
+ def mask_style_tokens(
234
+ self,
235
+ text: str,
236
+ threshold: float = 0.3,
237
+ mask_type: str = "pad",
238
+ class_index: int = 0,
239
+ ) -> str:
240
+ """
241
+ Utility function to mask out style tokens from a given string of text.
242
+
243
+ Style tokens are determined by first calculating feature importances (via
244
+ word attributions from trained StyleClassifer) for each token in the input sentence.
245
+ We then normalize the absolute values of attributions scores to see how much each token
246
+ contributes as a percentage overall style classification and rank those in descending order.
247
+
248
+ We then select the top N tokens that account for the cumulative _threshold_ amount (%) of
249
+ total styleattribution. By using cumulative percentages, N is not a fixed number and we
250
+ ultimately take however many tokens are needed to account for _threshold_ % of the overall
251
+ style.
252
+
253
+ We can optionally return a string with these style tokens padded out or completely removed
254
+ by toggling _mask_type_ between "pad" and "remove".
255
+
256
+ Args:
257
+ text (str)
258
+ threshold (float) - percentage of style attribution as cutoff for masking selection.
259
+ mask_type (str) - "pad" or "remove", indicates how to handle style tokens
260
+ class_index (str)
261
+
262
+ Returns:
263
+ text (str)
264
+
265
+ """
266
+
267
+ # get attributions and format as sorted dataframe
268
+ attributions = self.calculate_feature_attribution_scores(
269
+ text, class_index=class_index, as_norm=False
270
+ )
271
+ attributions_df = self.format_feature_attribution_scores(attributions)
272
+
273
+ # select tokens to mask
274
+ token_idxs_to_mask = []
275
+
276
+ # If the first token accounts for more than the set
277
+ # threshold, take just that token to mask. Otherwise,
278
+ # take all tokens up to the threshold
279
+ if attributions_df.iloc[0]["cumulative"] > threshold:
280
+ token_idxs_to_mask.append(attributions_df.index[0])
281
+ else:
282
+ token_idxs_to_mask.extend(
283
+ attributions_df[
284
+ attributions_df["cumulative"] <= threshold
285
+ ].index.to_list()
286
+ )
287
+
288
+ # Build text sequence with tokens masked out
289
+ mask_map = {"pad": "[PAD]", "remove": ""}
290
+ toks = [token for token, score in attributions]
291
+ for idx in token_idxs_to_mask:
292
+ toks[idx] = mask_map[mask_type]
293
+
294
+ if mask_type == "remove":
295
+ toks = [token for token in toks if token != ""]
296
+
297
+ # Decode that sequence
298
+ masked_text = self.explainer.tokenizer.decode(
299
+ self.explainer.tokenizer.convert_tokens_to_ids(toks),
300
+ skip_special_tokens=False,
301
+ )
302
+
303
+ # Remove special characters other than [PAD]
304
+ for special_token in self.explainer.tokenizer.all_special_tokens:
305
+ if special_token != "[PAD]":
306
+ masked_text = masked_text.replace(special_token, "")
307
+
308
+ return masked_text.strip()
309
+
310
+ @staticmethod
311
+ def format_feature_attribution_scores(attributions: List[tuple]) -> pd.DataFrame:
312
+ """
313
+ Utility for formatting attribution scores for style token mask selection
314
+
315
+ Sorts a given List[tuple] where tuples represent (token, score) by the
316
+ normalized absolute value of each token score.
317
+
318
+ """
319
+
320
+ df = pd.DataFrame(attributions, columns=["token", "score"])
321
+ df["abs_norm"] = df["score"].abs() / df["score"].abs().sum()
322
+ df = df.sort_values(by="abs_norm", ascending=False)
323
+ df["cumulative"] = df["abs_norm"].cumsum()
324
+ return df
325
+
326
+ @staticmethod
327
+ def cosine_similarity(tensor1: torch.Tensor, tensor2: torch.Tensor) -> List[float]:
328
+ """
329
+ Calculate cosine similarity on pairs of embedddings.
330
+
331
+ Can handle 1D Tensor for single pair or 2D Tensors with corresponding indicies
332
+ for matrix operation on multiple pairs.
333
+
334
+ """
335
+
336
+ assert tensor1.shape == tensor2.shape
337
+
338
+ # ensure 2D tensor
339
+ if tensor1.ndim == 1:
340
+ tensor1 = tensor1.unsqueeze(0)
341
+ tensor2 = tensor2.unsqueeze(0)
342
+
343
+ cos_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
344
+ return [round(val, 4) for val in cos_sim(tensor1, tensor2).tolist()]
345
+
346
+ @staticmethod
347
+ def mean_pooling(model_output, attention_mask):
348
+ """
349
+ Peform mean pooling over token embeddings to create sentence embedding. Here we take
350
+ the attention mask into account for correct averaging on active token positions.
351
+
352
+ CODE BORROWED FROM:
353
+ https://www.sbert.net/examples/applications/computing-embeddings/README.html#sentence-embeddings-with-transformers
354
+
355
+ """
356
+
357
+ token_embeddings = model_output[
358
+ 0
359
+ ] # First element of model_output contains all token embeddings
360
+ input_mask_expanded = (
361
+ attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
362
+ )
363
+ sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
364
+ sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
365
+
366
+ return sum_embeddings / sum_mask
src/style_classification.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from typing import List, Union
42
+
43
+ import torch
44
+ import numpy as np
45
+ from pyemd import emd
46
+ from transformers import pipeline
47
+
48
+
49
+ class StyleIntensityClassifier:
50
+ """
51
+ Utility for classifying style and calculating Style Transfer Intensity between
52
+ two pieces of text (i.e. input and output of TST model).
53
+
54
+ This custom evaluation metric aims to quantify the magnitude of transferred
55
+ style between two texts. To accomplish this, we pass input and output texts
56
+ through a trained style classifier to produce two distributions. We then
57
+ utilize Earth Movers Distance (EMD) to calculate the minimum "cost"/"work"
58
+ required to turn the input distribution into the output distribution. This
59
+ metric allows us to capture a more nuanced, per-example measure of style
60
+ transfer when compared to simply aggregating binary classifications over
61
+ records in a dataset.
62
+
63
+ Attributes:
64
+ model_identifier (str)
65
+
66
+ """
67
+
68
+ def __init__(self, model_identifier: str):
69
+ self.model_identifier = model_identifier
70
+ self.device = torch.cuda.current_device() if torch.cuda.is_available() else -1
71
+ self._build_pipeline()
72
+
73
+ def _build_pipeline(self):
74
+
75
+ self.pipeline = pipeline(
76
+ task="text-classification",
77
+ model=self.model_identifier,
78
+ device=self.device,
79
+ return_all_scores=True,
80
+ )
81
+
82
+ def score(self, input_text: Union[str, List[str]]):
83
+ """
84
+ Classify a given input text using the model initialized by the class.
85
+
86
+ Args:
87
+ input_text (`str` or `List[str]`) - Input text for classification
88
+
89
+ Returns:
90
+ classification (dict) - a dictionary containing the label, score, and
91
+ distribution between classes
92
+
93
+ """
94
+ if isinstance(input_text, str):
95
+ tmp = list()
96
+ tmp.append(input_text)
97
+ input_text = tmp
98
+
99
+ result = self.pipeline(input_text)
100
+ distributions = np.array(
101
+ [[label["score"] for label in item] for item in result]
102
+ )
103
+ return [
104
+ {
105
+ "label": self.pipeline.model.config.id2label[scores.argmax()],
106
+ "score": round(scores.max(), 4),
107
+ "distribution": scores.tolist(),
108
+ }
109
+ for scores in distributions
110
+ ]
111
+
112
+ def calculate_transfer_intensity(
113
+ self, input_text: List[str], output_text: List[str], target_class_idx: int = 1
114
+ ) -> List[float]:
115
+ """
116
+ Calcualates the style transfer intensity (STI) between two pieces of text.
117
+
118
+ Args:
119
+ input_text (list) - list of input texts with indicies corresponding
120
+ to counterpart in output_text
121
+ ouptput_text (list) - list of output texts with indicies corresponding
122
+ to counterpart in input_text
123
+ target_class_idx (int) - index of the target style class used for directional
124
+ score correction
125
+
126
+ Returns:
127
+ A list of floats with corresponding style transfer intensity scores.
128
+
129
+ """
130
+
131
+ if len(input_text) != len(output_text):
132
+ raise ValueError(
133
+ "input_text and output_text must be of same length with corresponding items"
134
+ )
135
+
136
+ input_dist = [item["distribution"] for item in self.score(input_text)]
137
+ output_dist = [item["distribution"] for item in self.score(output_text)]
138
+
139
+ return [
140
+ self.calculate_emd(input_dist[i], output_dist[i], target_class_idx)
141
+ for i in range(len(input_dist))
142
+ ]
143
+
144
+ def calculate_transfer_intensity_fraction(
145
+ self, input_text: List[str], output_text: List[str], target_class_idx: int = 1
146
+ ) -> List[float]:
147
+ """
148
+ Calcualates the style transfer intensity (STI) _fraction_ between two pieces of text.
149
+ See `calcualte_sti_fraction()` for details.
150
+
151
+ Args:
152
+ input_text (list) - list of input texts with indicies corresponding
153
+ to counterpart in output_text
154
+ ouptput_text (list) - list of output texts with indicies corresponding
155
+ to counterpart in input_text
156
+ target_class_idx (int) - index of the target style class used for directional
157
+ score correction
158
+
159
+ Returns:
160
+ A list of floats with corresponding style transfer intensity scores.
161
+
162
+ """
163
+
164
+ if len(input_text) != len(output_text):
165
+ raise ValueError(
166
+ "input_text and output_text must be of same length with corresponding items"
167
+ )
168
+
169
+ input_dist = [item["distribution"] for item in self.score(input_text)]
170
+ output_dist = [item["distribution"] for item in self.score(output_text)]
171
+
172
+ return [
173
+ self.calculate_sti_fraction(
174
+ input_dist[i],
175
+ output_dist[i],
176
+ ideal_dist=[0.0, 1.0],
177
+ target_class_idx=target_class_idx,
178
+ )
179
+ for i in range(len(input_dist))
180
+ ]
181
+
182
+ def calculate_sti_fraction(
183
+ self, input_dist, output_dist, ideal_dist=[0.0, 1.0], target_class_idx=1
184
+ ):
185
+ """
186
+ Calculate the direction-corrected style transfer intensity fraction between
187
+ two style distributions of equal length.
188
+
189
+ If output_dist moves closer towards target style class, the metric represents the percentage of
190
+ the possible _target_ style distribution that was captured during the transfer. If output_dist
191
+ moves further from the target style class, the metric represents the percentage of the possible
192
+ _source_ style distribution that was captured.
193
+
194
+ Args:
195
+ input_dist (list) - probabilities assigned to the style classes
196
+ from the input text to style transfer model
197
+ output_dist (list) - probabilities assigned to the style classes
198
+ from the outut text of the style transfer model
199
+ ideal_dist (list, optional): The maximum possibly distribution. Defaults to [0.0, 1.0].
200
+ target_class_idx (int, optional)
201
+
202
+ Returns:
203
+ sti_fraction (float)
204
+ """
205
+
206
+ sti = self.calculate_emd(input_dist, output_dist, target_class_idx)
207
+
208
+ if sti > 0:
209
+ potential = self.calculate_emd(input_dist, ideal_dist, target_class_idx)
210
+ else:
211
+ potential = self.calculate_emd(
212
+ input_dist, ideal_dist[::-1], target_class_idx
213
+ )
214
+
215
+ return sti / potential
216
+
217
+ @staticmethod
218
+ def calculate_emd(input_dist, output_dist, target_class_idx):
219
+ """
220
+ Calculate the direction-corrected Earth Mover's Distance (aka Wasserstein distance)
221
+ between two distributions of equal length. Here we penalize the EMD score if
222
+ the output text style moved further away from the target style.
223
+
224
+ Reference: https://github.com/passeul/style-transfer-model-evaluation/blob/master/code/style_transfer_intensity.py
225
+
226
+ Args:
227
+ input_dist (list) - probabilities assigned to the style classes
228
+ from the input text to style transfer model
229
+ output_dist (list) - probabilities assigned to the style classes
230
+ from the outut text of the style transfer model
231
+
232
+ Returns:
233
+ emd (float) - Earth Movers Distance between the two distributions
234
+
235
+ """
236
+
237
+ N = len(input_dist)
238
+ distance_matrix = np.ones((N, N))
239
+ dist = emd(np.array(input_dist), np.array(output_dist), distance_matrix)
240
+
241
+ transfer_direction_correction = (
242
+ 1 if output_dist[target_class_idx] >= input_dist[target_class_idx] else -1
243
+ )
244
+
245
+ return round(dist * transfer_direction_correction, 4)
src/style_transfer.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ from typing import List, Union
42
+
43
+ import torch
44
+ from transformers import pipeline
45
+
46
+
47
+ class StyleTransfer:
48
+ """
49
+ Model wrapper for a Text2TextGeneration pipeline used to transfer a style attribute on a given piece of text.
50
+
51
+ Attributes:
52
+ model_identifier (str) - Path to the model that will be used by the pipeline to make predictions
53
+ max_gen_length (int) - Upper limit on number of tokens the model can generate as output
54
+
55
+ """
56
+
57
+ def __init__(
58
+ self,
59
+ model_identifier: str,
60
+ max_gen_length: int = 200,
61
+ num_beams=4,
62
+ temperature=1,
63
+ ):
64
+ self.model_identifier = model_identifier
65
+ self.max_gen_length = max_gen_length
66
+ self.num_beams = num_beams
67
+ self.temperature = temperature
68
+ self.device = torch.cuda.current_device() if torch.cuda.is_available() else -1
69
+ self._build_pipeline()
70
+
71
+ def _build_pipeline(self):
72
+
73
+ self.pipeline = pipeline(
74
+ task="text2text-generation",
75
+ model=self.model_identifier,
76
+ device=self.device,
77
+ max_length=self.max_gen_length,
78
+ num_beams=self.num_beams,
79
+ temperature=self.temperature,
80
+ )
81
+
82
+ def transfer(self, input_text: Union[str, List[str]]) -> List[str]:
83
+ """
84
+ Transfer the style attribute on a given piece of text using the
85
+ initialized `model_identifier`.
86
+
87
+ Args:
88
+ input_text (`str` or `List[str]`) - Input text for style transfer
89
+
90
+ Returns:
91
+ generated_text (`List[str]`) - The generated text outputs
92
+
93
+ """
94
+ return [item["generated_text"] for item in self.pipeline(input_text)]
src/transformer_interpretability.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ import torch
42
+ from transformers_interpret import SequenceClassificationExplainer
43
+ from transformers import (
44
+ AutoTokenizer,
45
+ AutoModelForSequenceClassification,
46
+ )
47
+
48
+ from apps.visualization_utils import visualize_text
49
+
50
+ class CustomSequenceClassificationExplainer(SequenceClassificationExplainer):
51
+ """
52
+ Subclassing to replace `visualize()` method with custom styling.
53
+
54
+ Namely, removing a few columns, styling fonts, and re-arrangning legend position.
55
+ """
56
+
57
+ def visualize(self, html_filepath: str = None, true_class: str = None):
58
+ """
59
+ Visualizes word attributions. If in a notebook table will be displayed inline.
60
+ Otherwise pass a valid path to `html_filepath` and the visualization will be saved
61
+ as a html file.
62
+ If the true class is known for the text that can be passed to `true_class`
63
+ """
64
+ tokens = [token.replace("Δ ", "") for token in self.decode(self.input_ids)]
65
+ attr_class = self.id2label[self.selected_index]
66
+
67
+ if self._single_node_output:
68
+ if true_class is None:
69
+ true_class = round(float(self.pred_probs))
70
+ predicted_class = round(float(self.pred_probs))
71
+ attr_class = round(float(self.pred_probs))
72
+ else:
73
+ if true_class is None:
74
+ true_class = self.selected_index
75
+ predicted_class = self.predicted_class_name
76
+
77
+ score_viz = self.attributions.visualize_attributions( # type: ignore
78
+ self.pred_probs,
79
+ predicted_class,
80
+ true_class,
81
+ attr_class,
82
+ tokens,
83
+ )
84
+
85
+ # NOTE: here is the overwritten function
86
+ html = visualize_text([score_viz])
87
+
88
+ if html_filepath:
89
+ if not html_filepath.endswith(".html"):
90
+ html_filepath = html_filepath + ".html"
91
+ with open(html_filepath, "w") as html_file:
92
+ html_file.write(html.data)
93
+
94
+ return html
95
+
96
+
97
+ class InterpretTransformer:
98
+ """
99
+ Utility for visualizing word attribution scores from Transformer models.
100
+
101
+ This class utilizes the [Transformers Interpret](https://github.com/cdpierse/transformers-interpret)
102
+ libary to calculate word attributions using a techinique called Integrated Gradients.
103
+
104
+ Attributes:
105
+ cls_model_identifier (str)
106
+
107
+ """
108
+
109
+ def __init__(self, cls_model_identifier: str):
110
+
111
+ self.cls_model_identifier = cls_model_identifier
112
+ self.device = (
113
+ torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
114
+ )
115
+
116
+ self._initialize_hf_artifacts()
117
+
118
+ def _initialize_hf_artifacts(self):
119
+ """
120
+ Initialize a HuggingFace artifacts (tokenizer and model) according
121
+ to the provided identifiers for both SBert and the classification model.
122
+ Then initialize the word attribution explainer with the HF model+tokenizer.
123
+
124
+ """
125
+
126
+ # classifer
127
+ self.cls_tokenizer = AutoTokenizer.from_pretrained(self.cls_model_identifier)
128
+ self.cls_model = AutoModelForSequenceClassification.from_pretrained(
129
+ self.cls_model_identifier
130
+ )
131
+ self.cls_model.to(self.device)
132
+
133
+ # transformers interpret
134
+ self.explainer = CustomSequenceClassificationExplainer(
135
+ self.cls_model, self.cls_tokenizer
136
+ )
137
+
138
+ def visualize_feature_attribution_scores(self, text: str, class_index: int = 0):
139
+ """
140
+ Calculates and visualizes feature attributions using integrated gradients.
141
+
142
+ Args:
143
+ text (str) - text to get attributions for
144
+ class_index (int) - Optional output index to provide attributions for
145
+
146
+ """
147
+ self.explainer(text, index=class_index)
148
+ return self.explainer.visualize()
static/images/app_screenshot.png ADDED
static/images/cldr-favicon.ico ADDED
static/images/ffllogo2@1x.png ADDED
tests/__init__.py ADDED
File without changes
tests/test_model_classes.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ###########################################################################
2
+ #
3
+ # CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
4
+ # (C) Cloudera, Inc. 2022
5
+ # All rights reserved.
6
+ #
7
+ # Applicable Open Source License: Apache 2.0
8
+ #
9
+ # NOTE: Cloudera open source products are modular software products
10
+ # made up of hundreds of individual components, each of which was
11
+ # individually copyrighted. Each Cloudera open source product is a
12
+ # collective work under U.S. Copyright Law. Your license to use the
13
+ # collective work is as provided in your written agreement with
14
+ # Cloudera. Used apart from the collective work, this file is
15
+ # licensed for your use pursuant to the open source license
16
+ # identified above.
17
+ #
18
+ # This code is provided to you pursuant a written agreement with
19
+ # (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
20
+ # this code. If you do not have a written agreement with Cloudera nor
21
+ # with an authorized and properly licensed third party, you do not
22
+ # have any rights to access nor to use this code.
23
+ #
24
+ # Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
25
+ # contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
26
+ # KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
27
+ # WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
28
+ # IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
29
+ # FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
30
+ # AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
31
+ # ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
32
+ # OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
33
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
34
+ # CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
35
+ # RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
36
+ # BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
37
+ # DATA.
38
+ #
39
+ # ###########################################################################
40
+
41
+ import pytest
42
+ import transformers
43
+
44
+ from src.style_transfer import StyleTransfer
45
+ from src.style_classification import StyleIntensityClassifier
46
+ from src.content_preservation import ContentPreservationScorer
47
+ from src.transformer_interpretability import InterpretTransformer
48
+
49
+
50
+ @pytest.fixture
51
+ def subjectivity_example_data():
52
+ examples = [
53
+ """there is an iconic roadhouse, named "spud's roadhouse", which sells fuel and general shop items , has great meals and has accommodation.""",
54
+ "chemical abstracts service (cas), a prominent division of the american chemical society, is the world's leading source of chemical information.",
55
+ "the most serious scandal was the iran-contra affair.",
56
+ "another strikingly elegant four-door saloon for the s3 continental came from james young.",
57
+ "other ambassadors also sent their messages of condolence following her passing.",
58
+ ]
59
+
60
+ ground_truth = [
61
+ 'there is a roadhouse, named "spud\'s roadhouse", which sells fuel and general shop items and has accommodation.',
62
+ "chemical abstracts service (cas), a division of the american chemical society, is a source of chemical information.",
63
+ "one controversy was the iran-contra affair.",
64
+ "another four-door saloon for the s3 continental came from james young.",
65
+ "other ambassadors also sent their messages of condolence following her death.",
66
+ ]
67
+
68
+ return {"examples": examples, "ground_truth": ground_truth}
69
+
70
+
71
+ @pytest.fixture
72
+ def subjectivity_styletransfer():
73
+ MODEL_PATH = "cffl/bart-base-styletransfer-subjective-to-neutral"
74
+ return StyleTransfer(model_identifier=MODEL_PATH, max_gen_length=200)
75
+
76
+
77
+ @pytest.fixture
78
+ def subjectivity_styleintensityclassifier():
79
+ CLS_MODEL_PATH = "cffl/bert-base-styleclassification-subjective-neutral"
80
+ return StyleIntensityClassifier(model_identifier=CLS_MODEL_PATH)
81
+
82
+
83
+ @pytest.fixture
84
+ def subjectivity_contentpreservationscorer():
85
+ CLS_MODEL_PATH = "cffl/bert-base-styleclassification-subjective-neutral"
86
+ SBERT_MODEL_PATH = "sentence-transformers/all-MiniLM-L6-v2"
87
+ return ContentPreservationScorer(
88
+ cls_model_identifier=CLS_MODEL_PATH, sbert_model_identifier=SBERT_MODEL_PATH
89
+ )
90
+
91
+
92
+ @pytest.fixture
93
+ def subjectivity_interprettransformer():
94
+ CLS_MODEL_PATH = "cffl/bert-base-styleclassification-subjective-neutral"
95
+ return InterpretTransformer(cls_model_identifier=CLS_MODEL_PATH)
96
+
97
+
98
+ # test class initialization
99
+ def test_StyleTransfer_init(subjectivity_styletransfer):
100
+ assert isinstance(
101
+ subjectivity_styletransfer.pipeline,
102
+ transformers.pipelines.text2text_generation.Text2TextGenerationPipeline,
103
+ )
104
+
105
+
106
+ def test_StyleIntensityClassifier_init(subjectivity_styleintensityclassifier):
107
+ assert isinstance(
108
+ subjectivity_styleintensityclassifier.pipeline,
109
+ transformers.pipelines.text_classification.TextClassificationPipeline,
110
+ )
111
+
112
+
113
+ def test_ContentPreservationScorer_init(subjectivity_contentpreservationscorer):
114
+ assert isinstance(
115
+ subjectivity_contentpreservationscorer.cls_model,
116
+ transformers.models.bert.modeling_bert.BertForSequenceClassification,
117
+ )
118
+ assert isinstance(
119
+ subjectivity_contentpreservationscorer.sbert_model,
120
+ transformers.models.bert.modeling_bert.BertModel,
121
+ )
122
+
123
+
124
+ def test_InterpretTransformer_init(subjectivity_interprettransformer):
125
+ assert isinstance(
126
+ subjectivity_interprettransformer.cls_model,
127
+ transformers.models.bert.modeling_bert.BertForSequenceClassification,
128
+ )
129
+
130
+
131
+ # test class functionality
132
+ def test_StyleTransfer_transfer(subjectivity_styletransfer, subjectivity_example_data):
133
+ assert subjectivity_example_data[
134
+ "ground_truth"
135
+ ] == subjectivity_styletransfer.transfer(subjectivity_example_data["examples"])
136
+
137
+
138
+ def test_StyleIntensityClassifier_calculate_transfer_intensity_fraction(
139
+ subjectivity_styleintensityclassifier, subjectivity_example_data
140
+ ):
141
+ sti_frac = (
142
+ subjectivity_styleintensityclassifier.calculate_transfer_intensity_fraction(
143
+ input_text=subjectivity_example_data["examples"],
144
+ output_text=subjectivity_example_data["ground_truth"],
145
+ )
146
+ )
147
+ assert sti_frac == [
148
+ 0.9891820847234861,
149
+ 0.9808499743983614,
150
+ 0.8070009460737938,
151
+ 0.9913705583756346,
152
+ 0.9611679711017459,
153
+ ]
154
+
155
+
156
+ def test_ContentPreservationScorer_calculate_content_preservation_score(
157
+ subjectivity_contentpreservationscorer, subjectivity_example_data
158
+ ):
159
+ cps = subjectivity_contentpreservationscorer.calculate_content_preservation_score(
160
+ input_text=subjectivity_example_data["examples"],
161
+ output_text=subjectivity_example_data["ground_truth"],
162
+ mask_type="none",
163
+ )
164
+ assert cps == [0.9369, 0.9856, 0.7328, 0.9718, 0.9709]