File size: 38,544 Bytes
6acac17
c07f76c
 
6acac17
 
c07f76c
6acac17
 
 
 
 
 
 
d249460
6acac17
 
 
 
 
f80e884
4886b10
130b2b1
 
 
 
4886b10
6acac17
5f1b3e1
 
6acac17
130b2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
4939927
 
 
 
 
 
fe913b9
4939927
 
 
 
 
 
 
fe913b9
6acac17
 
 
 
 
5f1b3e1
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408497e
6acac17
f70db9f
fe913b9
4939927
bcef371
4939927
bcef371
 
 
 
 
4939927
7d98089
4939927
 
 
27bcf76
fe913b9
4939927
c07f76c
 
 
 
 
 
408497e
 
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408497e
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f008d
 
 
 
 
 
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f008d
 
 
6acac17
 
 
 
4059c4d
 
 
 
60b88d5
4059c4d
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733608
6acac17
dbd5fa9
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408497e
6acac17
 
408497e
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5abe0a
6acac17
 
8b30d64
d328ff3
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
fe913b9
 
6acac17
8b30d64
6acac17
 
 
 
 
 
 
db68198
4cd1838
c249a13
db68198
fe913b9
130b2b1
 
6acac17
 
 
 
 
 
db68198
4cd1838
c249a13
db68198
fe913b9
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06b4d2
6acac17
2c8af08
 
6acac17
2c8af08
6acac17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
import streamlit as st
import streamlit.components.v1 as components

import pandas as pd
import PIL
# import ipywidgets
from joblib import dump, load

from bokeh.models.widgets import Div

import main_app

import utils
from utils import *

import email
import re
from bs4 import BeautifulSoup
import numpy as np
import tempfile
from sklearn.preprocessing import normalize
from colr import color
import cv2
from PIL import ImageColor



CURRENT_THEME = "blue"
IS_DARK_THEME = True


def get_rgb(color_str):
  return ImageColor.getcolor(color_str, "RGB")

def create_image(width, height, rgb_color=(0, 0, 0)):
    """Create new image(numpy array) filled with certain color in RGB"""
    # Create black blank image
    image = np.zeros((height, width, 3), np.uint8)
    # Since OpenCV uses BGR, convert the color first
    color = tuple(reversed(rgb_color))
    # Fill image with color
    image[:] = color
    return image

# def add_text(image, cta_txt):
#   font = cv2.FONT_HERSHEY_SIMPLEX    
#   # fontScale
#   fontScale = 1
#   # Blue color in BGR
#   color = (0, 0, 255)
  
#   # Line thickness of 2 px
#   h=image.shape[0]/2
#   w=image.shape[1]/2
#   thickness = 2
#   image = cv2.putText(image, cta_txt, (h,w), font, 
#                    fontScale, color, thickness, cv2.LINE_AA)
#   return image

def add_bg_from_url():
    st.markdown(
        f"""
         <style>
         .stApp {{
             background-image: linear-gradient(135deg,#061c2c,#084e69 35%,#3e7e89);
             background-attachment: fixed;
             background-size: cover
            
         }}
         </style>
         """,
        unsafe_allow_html=True
    )

add_bg_from_url()

def table_data():
    # creating table data
    field = [
        'Data Scientist',
        'Dataset',
        'Algorithm',
        'Framework',
        'Ensemble',
        'Domain',
        'Model Size'
    ]

    data = [
        'Buwani',
        'Internal + Campaign monitor',
        'Random Forest',
        'Sci-kit learn',
        'Bootstrapping',
        'Bootstrapping Aggregation',
        '60.3 KB'
    ]

    data = {
        'Field': field,
        'Data': data
    }

    df = pd.DataFrame.from_dict(data)

    return df


def url_button(button_name, url):
    if st.button(button_name):
        js = """window.open('{url}')""".format(url=url)  # New tab or window
        html = '<img src onerror="{}">'.format(js)
        div = Div(text=html)
        st.bokeh_chart(div)


if 'generate_pred' not in st.session_state:
    st.session_state.generate_pred = False

st.markdown("# Call to Action: Email Industry")


stats_col1, stats_col2, stats_col3, stats_col4 = st.columns([1, 1, 1, 1])

with stats_col1:
    st.caption("Production: Development")
    #st.metric(label="Production", value="Devel")
with stats_col2:
    st.caption("Accuracy: 80.49%")
    #st.metric(label="Accuracy", value="80.49%")

with stats_col3:
    st.caption("Speed: 0.004ms")
    #st.metric(label="Speed", value="0.004 ms")

with stats_col4:
    st.caption("Industry: Email")
    #st.metric(label="Industry", value="Email")


with st.sidebar:

    with st.expander('Model Description', expanded=False):
        img = PIL.Image.open("figures/ModelCTA.png")
        st.image(img)
        st.markdown('This model aims to provide email campaign services and campaign engineers with a greater understanding of how to format your Call-To-Action (CTA) features, trained on a large corpus of email campaign CTA successes and failures. This model provides real-time predictive analytics recommendations to suggest optimal CTAs focusing the users attention to the right text and color of your CTA content. The Loxz Digital CTA Feature Selection will provide the best way to send out campaigns without the opportunity cost and time lapse of A/B testing. Email metrics are provided prior to campaign launch and determine the optimal engagement rate based on several factors, including several inputs by the campaign engineer.')

    with st.expander('Model Information', expanded=False):
        # Hide roww index
        hide_table_row_index = """
            <style>
            thead tr th:first-child {display:none}
            tbody th {display:none}
            </style>
            """
        st.markdown(hide_table_row_index, unsafe_allow_html=True)
        st.table(table_data())

    url_button('Model Homepage', 'https://www.loxz.com/#/models/CTA')
    # url_button('Full Report','https://resources.loxz.com/reports/realtime-ml-character-count-model')
    url_button('Amazon Market Place', 'https://aws.amazon.com/marketplace')


industry_lists = [
'Academic and Education',
  'Entertainment',
  'Financial',
  'Healthcare',
  'Hospitality',
  'Retail',
  'Software and Technology',
  'Transportation'
]

campaign_types = [
 'Abandoned_Cart',
  'Newsletter',
  'Promotional',
  'Survey',
  'Transactional',
  'Webinar',
  'Engagement',
  'Review_Request',
  'Product_Announcement'
]

target_variables = [
    'Click_To_Open_Rate',
    'Conversion_Rate'
]

call2action = [
    'Color', 'Text', 'Both'
]


uploaded_file = st.file_uploader(
    "Please upload your email (In HTML Format)", type=["html"])

industry = st.selectbox(
    'Please select your industry',
    industry_lists
)

campaign = st.selectbox(
    'Please select your campaign type',
    campaign_types
)

target = st.selectbox(
    'Please select your target variable',
    target_variables
)

call2action_feature = st.selectbox(
    'Select the Call-To-Action Feature you would like to analyze for predictive analytics',
    call2action
)

def generate_cta_list(num_text):
    cta_list = []
    for i in range(num_text):
        cta_list.append('CTA Number {}'.format(i+1))
    cta_list.append('All')
    return cta_list


def display_CTA(text, color):
    """
    Display one cta based on their text and color
    """
    base_string = ""
    for i in range(len(text)):
        base_string += """
        CTA Number {}:
        <input type="button"
            style="background-color:{};
            color:black;
            width:150px;
            height:30px;
            margin:4px"
            value="{}">""".format(i+1, color[i], text[i])
        if i != len(text)-1:
            base_string += "<br>"
    return base_string

#parsed_email UploadedFile object


def parse_features_from_html(body, soup):
    cta_file = open('cta_text_list.txt', 'r')
    cta_vfile = open('cta_verbs_list.txt', 'r')

    cta_list = []
    cta_verbs = []
    for i, ln in enumerate(cta_file):
        cta_list.append(ln.strip())
    
    for i, ln in enumerate(cta_vfile):
        cta_verbs.append(ln.strip())
        
    #extracting visible text:
    visible_text = []
    ccolor = []
    text = []
    
#     vtexts = soup.findAll(text=True)  ## Find all the text in the doc
    bodytext = soup.get_text()
    vtexts = preprocess_text(bodytext)
    vtexts = " ".join(vtexts.split())
#     for v in vtexts:
#         if len(v) > 2:
#             if not "mso" in v:
#                 if not "endif" in v:
#                     if not "if !vml" in v:
#                         vtext = re.sub(r'\W+', ' ', v)
#                         if len(vtext) > 2:
#                             visible_text.append(vtext)

    # extracting links
    #items = soup.find_all('a', {"class": "mso_button"})
    items = soup.find_all('a', {'href': True})
#     print(items)
#     print('++++++++++++++')

    for i in items:  # Items contain all <a> with with 'href'
        try:
            #if i['style']:
            style = i['style']
            style = style.replace('\r', '')
            style = style.replace('\n', '')
            styles = style.split(';')
            
            color_flag = 0  ## Indicate whether there's 'background-color' option
            style_str = str(style)
            
            if ('background-color' in style_str) and ('display' in style_str) and ('border-radius' in style_str):
#                 print(styles)
                for s in styles:
                    #st.write(s)
                    
                    if 'background-color' in s:
                        #st.write('background-color in s')
                        #st.write(color_flag)

                        cl = s.split(':')[1].lower()
                        cl = cl.replace('!important', '')
                        cl = cl.replace('=', '')
                        if cl.strip() == 'transparent':
                            cl = '#00ffffff'
                        if 'rgb' in cl:
                            rgb = cl[cl.index('(')+1:cl.index(')')].split(',')
                            cl = rgb_to_hex((int(rgb[0]), int(rgb[1]), int(rgb[2])))
                        ccolor.append(cl.strip())  # Add background color to CTA color list
                        color_flag = 1

                        #st.write('cf after:')
                        #st.write(color_flag)
#                         print(body)
                    #st.write(color_flag)
#                 if 'padding' in s:  # Check if border-radius is there for a button border (CTA)
#                     print(styles)
#                     color_flag = 1
                
#                 elif 'color' in s:
#                     color.append(s.split(':')[1])
                
#             text.append(i.select_one("span").text)
            #st.write(color_flag)
            #st.write(ccolor)
            #st.write(i)
            if color_flag == 1:
                
                #st.write(i)

                clean = re.compile('<.*?>')
                
                t = re.sub(clean, '', i.string.replace('\n', '').replace('\t', ' ')).lower()
                #st.write(t)
                #st.write(i)
            
                t.replace('→', '')
                t.replace('\t', ' ')
            
                text.append(t.strip())

                
#                 print(i.string.replace('\n', ''))
            #st.write(color_flag)
        except:
            continue
            
        #st.write(text)
        #st.write(ccolor)

    op_color = []  # Output text and color lists
    op_text = []

    #doesnt hit since ccolor and text is not empty (has 2)
    if (text == []) or (ccolor == []):
        return vtexts, [], []
    
    else:
        ## cta_list, cta_verbs
        for c in range(len(text)):
            if text[c] in cta_list:
                op_text.append(text[c])
                op_color.append(ccolor[c])
            
            else:
                for cv in cta_verbs:
                    if cv in text[c]:
                        op_text.append(text[c])
                        op_color.append(ccolor[c])    
                 
        return vtexts, op_color, op_text


def email_parser(parsed_email):
#     email_data = parsed_email.value  # parsed_email.data[0]
#     emailstr = email_data.decode("utf-8")
    efile = open(parsed_email.name,'r')
    emailstr = ""
    for i, line in enumerate(efile):
        emailstr += line
        
    b = email.message_from_string(emailstr)
    body = ""

    for part in b.walk():
        if part.get_content_type(): 
            body = str(part.get_payload())
#             print('EMAIL: ', body)
            doc = preprocess_text(body)
            soup = BeautifulSoup(doc)
    vtext, ccolor, text = parse_features_from_html(body, soup)
    #save to session state
    st.session_state.vtext = vtext
    st.session_state.ccolor = ccolor
    st.session_state.text = text 
    return vtext, ccolor, text

## "=",=3D removed from html_tags.csv

def preprocess_text(doc):
    html_tags = open('html_tags.csv', 'r')

    tags = {}

    for i, line in enumerate(html_tags):
        ln = line.strip().split(',')
        ln[0] = ln[0].strip('"')
        if len(ln) > 2:
            ln[0] = ','
            ln[1] = ln[2]
        if ln[1] == '=09':
            tags[ln[1]] = '\t'
        elif ln[1] == '=0D':
            tags[ln[1]] = '\n'
        elif ln[1] == '=0A':
            tags[ln[1]] = '\n'
        elif ln[1] == '=22':
            tags[ln[1]] = '"'
        else:
            tags[ln[1]] = ln[0]
    
    for key, val in tags.items():
        if key in doc:
            doc = doc.replace(key, val)
            
    if '=3D' in doc:
        doc = doc.replace('=3D', '%3D')
        
    if '=' in doc:
        doc = doc.replace('=\n', '')
    
    doc = doc.replace('%3D', '=')
#     print ('MODIFIED: ', doc)
    return doc


## Select which CTA to be used for analysis

## Select which CTA to be used for analysis

def select_cta_button(ccolor, text):
    user_input = []
    print("\nNumber of Call-To-Actions in the email:", len(text), '\n')
    print('Select which Call-To-Action button(s) you would like to analyze: \n')

    st.write("\nNumber of Call-To-Actions in the email:", len(text), '\n')
    st.write('Select which Call-To-Action button(s) you would like to analyze: \n')
    
    #st.write(st.session_state)
    buttons_out=[]
    for x in np.arange(len(st.session_state.ccolor)):
        color_rgb=get_rgb(str(st.session_state.ccolor[x]))
        color_img=create_image(100,30,color_rgb)
        # color_img=add_text(color_img,"Call_To_Action text: "+str(st.session_state.text[x]))
        col1, col2, col3, col4 = st.columns([1,1,1,1])
        with col2:
            # st.button('1')
            st.write('Call_To_Action text: {}'.format(str(st.session_state.text[x])))
        with col3:
            st.write('Call_To_Action button Color:')
        with col4:
            # st.button('2')
            st.image(color_img,caption='CTA Button Color', channels='BGR')
        with col1:
            ctab=st.button("Select This CTA button to optimize", key = x) 

        # st.image(color_img, channels='BGR')
        # ctab=st.button("Call_To_Action text: "+str(st.session_state.text[x])+"; color: "+str(st.session_state.ccolor[x]), key = x)
        # ctab=st.button("Select This CTA button to optimize", key = x) 
        res=[]
        res.append(x)
        val={}
        val['value']=ctab
        res.append(val)
        buttons_out.append(res)
    return buttons_out
    '''def toggle_all(change):
        for cb in user_input:
            cb.value = select_all.value
    
    select_all = ipywidgets.Checkbox(value=False, description='Select All', disabled=False, indent=False)
    #display(select_all)
    
        
    for idx, i in enumerate(text):
        option_str = str(int(idx)+1) + '. Call-To-Action Text: '
        cta_menu = ipywidgets.Checkbox(value=False, description=option_str, disabled=False, indent=False)
        
        btn_layout = ipywidgets.Layout(height='20px', width='20px')
        color_button = ipywidgets.Button(layout = btn_layout, description = '')
        color_button.style.button_color = ccolor[idx]
        
        widg_container = ipywidgets.GridBox([cta_menu, ipywidgets.Label((text[idx]).upper()),
                                        ipywidgets.Label(' Color: ')  , color_button], 
                                      layout=ipywidgets.Layout(grid_template_columns="180px 150px 50px 100px"))
        #display(widg_container)
        user_input.append(cta_menu)
        
    select_all.observe(toggle_all)
        
    return user_input'''

def save_state():
    if uploaded_file is not None:
        if 'industry_lists' not in st.session_state:
            st.session_state.industry_lists = industry_lists
        if 'campaign_types' not in st.session_state:    
            st.session_state.campaign_types = campaign_types
        if 'target_variables' not in st.session_state:   
            st.session_state.target_variables = target_variables
        if 'call2action' not in st.session_state:      
            st.session_state.call2action = call2action
        if 'uploaded_file' not in st.session_state:       
            st.session_state.uploaded_file = uploaded_file
        if 'industry' not in st.session_state:       
            st.session_state.industry = industry
        if 'campaign' not in st.session_state:   
            st.session_state.campaign = campaign
        if 'target' not in st.session_state:   
            st.session_state.target = target
        if 'call2action_feature' not in st.session_state:   
            st.session_state.call2action_feature = call2action_feature
        
        vtext, ccolor, text = email_parser(st.session_state.uploaded_file)


save_state()


### Read in data
def import_data(bucket, key):
    location = 's3://{}/{}'.format(bucket, key)
    df_data = pd.read_csv(location, encoding = "ISO-8859-1",index_col=0)
    df_data = df_data.reset_index(drop=True)
    return df_data

### Read in data
def read_data(path, fname):
    df_data = pd.read_csv(path+fname, encoding = "ISO-8859-1",index_col=0)
    df_data = df_data.reset_index(drop=True)
    return df_data
    
### Model Training
    
def get_predictions(selected_variable, selected_industry, selected_campaign, 
                    selected_cta, email_text, cta_col, cta_txt, cta_menu):
    
    bucket_name = 'sagemakermodelcta'
    
    if selected_variable == 'Click_To_Open_Rate':
        X_name = 'Xtest_MLP_CTOR.csv'
#         y_name = 'ytest_MLP_CTOR.csv'
        key = 'modelCTA_MLP_CTOR.sav'
        
    elif selected_variable == 'Conversion_Rate':
        X_name = 'Xtest_MLP_ConversionRate.csv'
#         y_name = 'ytest_MLP_Conversion_Rate.csv'
        key = 'modelCTA_MLP_ConversionRate.sav'
    
    # training_dataset = import_data('s3://emailcampaigntrainingdata/ModelCTA', 'recommendations.csv')
    training_dataset=read_data("./data/","recommendations.csv")
    # X_test = import_data('s3://emailcampaigntrainingdata/ModelCTA', X_name)
#     y_test = import_data('s3://emailcampaigntrainingdata/ModelCTA', y_name)

        
    # load model from S3
    # with tempfile.TemporaryFile() as fp:
    #     s3_client.download_fileobj(Fileobj=fp, Bucket=bucket_name, Key=key)
    #     fp.seek(0)
    #     regr = joblib.load(fp)
    model_file='./models/'+key
    regr=joblib.load(model_file)
    
    email_body_dict = {}
    for _, r in training_dataset.iterrows():
        if r[0] not in email_body_dict.keys():
            email_body_dict[r[0]] = r[4]
            
    email_body = email_body_dict.keys()
    texts = list(email_body_dict.values())
#     texts = training_dataset['body'].unique()  ## Use email body for NLP 
#     texts = training_dataset['cta_text'].unique()

#     y_pred = regr.predict(X_test)
#     print(X_test)
#     r2_test = r2_score(y_test, y_pred)

    ## Get recommendation 
    recom_model = text_embeddings(email_body)
#     recom_model = text_embeddings()
    
    industry_code_dict = dict(zip(training_dataset.industry, training_dataset.industry_code))
    campaign_code_dict = dict(zip(training_dataset.campaign, training_dataset.campaign_code))
    color_code_dict = dict(zip(training_dataset.cta_color, training_dataset.color_code))
    text_code_dict = dict(zip(training_dataset.cta_text, training_dataset.text_code))
    st.markdown('##### CTA_menue is: <span style="color:yellow">{}</span>'.format(cta_menu), unsafe_allow_html=True)
    for ip_idx, ip in enumerate(cta_menu):  # For each CTA selected
        if ip[1]['value'] == True:
            print(f'\n\x1b[4mCall-To-Action button {int(ip_idx)+1}\x1b[0m: ')
            cta_ind = ip_idx
            selected_color = cta_col[cta_ind]
            selected_text = cta_txt[cta_ind]
    
            df_uploaded = pd.DataFrame(columns=['industry', 'campaign', 'cta_color', 'cta_text'])
            df_uploaded.loc[0] = [selected_industry, selected_campaign, cta_col, cta_txt]    
            df_uploaded['industry_code'] = industry_code_dict.get(selected_industry)
#             df_uploaded['campaign_code'] = campaign_code_dict.get(selected_campaign)
            
            if selected_campaign not in campaign_code_dict.keys():
                campaign_code_dict[selected_campaign] = max(campaign_code_dict.values()) + 1
                
            df_uploaded['campaign_code'] = campaign_code_dict.get(selected_campaign)
                
            if selected_color not in color_code_dict.keys():
                color_code_dict[selected_color] = max(color_code_dict.values()) + 1

            df_uploaded['color_code'] = color_code_dict.get(selected_color)

            if selected_text not in text_code_dict.keys():
                text_code_dict[selected_text] = max(text_code_dict.values()) + 1

            df_uploaded['text_code'] = text_code_dict.get(selected_text)


            df_uploaded_test = df_uploaded.drop(['industry', 'campaign', 'cta_color', 'cta_text'], 
                                                axis = 1, inplace = False)

            df_uploaded_test = df_uploaded_test.dropna()
        
#         df_testset = df_uploaded_test.copy()
        
#         if selected_cta == 'Text':
#             for k in text_code_dict.keys():
#                 df_temp = df_uploaded_test.copy()
#                 df_temp.text_code = text_code_dict.get(k)
#                 df_testset = pd.concat([df_testset, df_temp], ignore_index=True)
                
# #         print(df_testset.drop_duplicates())
        
#             arr = df_testset.to_numpy().astype('float64')
#             predicted_rate =  regr.predict(arr)
            
#             sorted_index_array = np.argsort(predicted_rate)
#             sorted_array = predicted_rate[sorted_index_array]
#             print(sorted_array[-3 : ])

        #print('Length', arr.size)
    
            arr = df_uploaded_test.to_numpy().astype('float64')
            arr_norm = normalize(arr, norm = 'l2')
            predicted_rate =  regr.predict(arr_norm)[0]
            output_rate = predicted_rate

            if output_rate < 0:
                 st.markdown("##### Sorry, Current model couldn't provide predictions on the target variable you selected.", unsafe_allow_html=True)
            else:
                print(f'\x1b[35m\nModel Prediction on the {selected_variable} is: \x1b[1m{round(output_rate*100, 2)}%\x1b[39m\x1b[22m')
                st.markdown("##### Model Prediction on the {} is {}".format(selected_variable, round(output_rate*100, 2)), unsafe_allow_html=True)
                selected_industry_code = industry_code_dict.get(selected_industry)
                selected_campaign_code = campaign_code_dict.get(selected_campaign)

                ### Create dataset for recommendation
                # select the certain industry that user selected
                ###+++++use training data+++++++
                df_recom = training_dataset[["industry_code", "campaign_code", "cta_color", "cta_text", 
                                          selected_variable]]
                df_recom = df_recom[df_recom["industry_code"] == selected_industry_code]
#                 df_recom = df_recom[df_recom["campaign_code"] == selected_campaign_code]

                df_recom[selected_variable]=df_recom[selected_variable].apply(lambda x:round(x, 5))
                df_recom_sort = df_recom.sort_values(by=[selected_variable])

                ## Filter recommendatins for either CTA text or color
                recom_ind = 0
                st.markdown('##### selected_cta is: <span style="color:yellow">{}</span>'.format(selected_cta), unsafe_allow_html=True)
                if selected_cta == 'Color':
                    df_recom = df_recom_sort.drop_duplicates(subset=['cta_color'], keep='last')
                    # st.markdown('##### df_recom is: <span style="color:yellow">{}</span>'.format(df_recom), unsafe_allow_html=True)

                    
                    replaces = False
                    if len(df_recom) < 3:
                        replaces = True
                    
                    df_recom_extra = df_recom.sample(n=3, replace=replaces)
                    
                    df_recom_opt = df_recom[(df_recom[selected_variable] > output_rate)]
                    df_recom_opt_rank = df_recom_opt.head(n=3)
                    df_recom_opt_rank_out = df_recom_opt_rank.sort_values(by=[selected_variable], ascending=False)
#                     df_recom_opt_rank = df_recom_opt.nlargest(3, [selected_variable])

                    print(f"\nTo get a higher {selected_variable}, the model recommends the following options: ")
                    st.markdown('##### To get a higher {}, the model recommends the following options:'.format(selected_variable), unsafe_allow_html=True)

                    if len(df_recom_opt_rank_out) < 2:
                        # st.markdown('##### Youve already achieved the highest {} with the current Call-To-Action Colors!'.format(selected_variable), unsafe_allow_html=True)
#                         print("You've already achieved the highest", selected_variable, 
#                               "with the current Call-To-Action Colors!")
                        increment = output_rate + (0.02*3)
                        for _, row in df_recom_extra.iterrows():
                            target_rate = random.uniform(increment - 0.02, increment)
                            increment = target_rate - 0.001
                            recom_cta = row[2]
                            color_rgb=get_rgb(recom_cta)
                            color_img=create_image(100,30,color_rgb)
                            st.image(color_img, channels='BGR')
                            # st.markdown('##### recom_cta is: <span style="color:yellow">{}</span>'.format(recom_cta), unsafe_allow_html=True)
                            st.markdown('##### target_rate for above recommended CTA button Color is: <span style="color:yellow">{}</span>'.format(round(target_rate*100, 2)), unsafe_allow_html=True)


                            print(f"  {(color('  ', fore='#ffffff', back=recom_cta))}  \x1b[1m{round(target_rate*100, 2)}%\x1b[22m")
                                                                                                                               
                    else:
                        for _, row in df_recom_opt_rank_out.iterrows():
                            target_rate = row[4]
                            recom_cta = row[2]
                            color_rgb=get_rgb(recom_cta)
                            color_img=create_image(100,30,color_rgb)
                            st.image(color_img, channels='BGR')
                            # st.markdown('##### recom_cta is: {}'.format(recom_cta), unsafe_allow_html=True)
                            st.markdown('##### target_rate for above recommended CTA button Color is: <span style="color:yellow">{}</span>'.format(round(target_rate*100, 2)), unsafe_allow_html=True)
                            print(f"  {(color('  ', fore='#ffffff', back=recom_cta))}  \x1b[1m{round(target_rate*100, 2)}%\x1b[22m")

                elif selected_cta == 'Text':
                    df_recom = df_recom_sort.drop_duplicates(subset=['cta_text'], keep='last')
#                     df_recom_opt = df_recom[(df_recom[selected_variable] > output_rate)]
#                     df_recom_opt_rank = df_recom_opt.sample(n=3)
#                     df_recom_opt_rank_out = df_recom_opt_rank.sort_values(by=[selected_variable], ascending=False)
# #                     df_recom_opt_rank = df_recom_opt.nlargest(3, [selected_variable])
                    
                    words = simple_preprocess(email_text)
                    test_doc_vector = recom_model.infer_vector(words)
                    recom_similar = recom_model.dv.most_similar(positive = [test_doc_vector], topn=30)
                    
#                     query_vec = recom_model.encode([selected_text])[0]
#                     df_cosine = pd.DataFrame(columns=["cta_text", "similarity"])
#                     for sent in texts:
#                         sim = cosine(query_vec, recom_model.encode([sent])[0])
# #                     print("Sentence = ", sent, "; similarity = ", sim)
#                         df_cosine.loc[len(df_cosine.index)] = [sent, sim]
#                     print(df_cosine)
                    
#                     df_cosine_sort = df_cosine.sort_values(by=['similarity'], ascending=False)
                    df_recom_opt_out = pd.DataFrame(columns=["industry_code", "campaign_code", "cta_color", 
                                                             "cta_text", selected_variable])
                    
                    #for _, w in df_cosine_sort.iterrows():
                    for _, w in enumerate(recom_similar):
                        sim_word = texts[w[0]]  #w[0] 
#                         print(sim_word)
                        df_recom_opt_sim = df_recom[df_recom['cta_text'] == sim_word]
                        df_recom_opt_out = pd.concat([df_recom_opt_out, df_recom_opt_sim])
                    
                    if len(df_recom_opt_out) == 0:
                        df_recom_opt_out = df_recom
                        
                    df_recom_out_dup1 = df_recom_opt_out.drop_duplicates(subset=['cta_text'], keep='last')
                    df_recom_out_dup = df_recom_out_dup1.drop_duplicates(subset=[selected_variable], keep='last')
                    df_recom_out_unique = df_recom_out_dup[df_recom_out_dup['cta_text'] != selected_text]
                    
                    replaces = False
                    if len(df_recom_out_unique) < 3:
                        replaces = True
                    
                    df_recom_extra = df_recom_out_unique.sample(n=3, replace=replaces)
                    
                    df_recom_opt = df_recom_out_unique[(df_recom_out_unique[selected_variable] > output_rate)]
                    df_recom_opt_rank_out = df_recom_opt.head(3).sort_values(by=[selected_variable], 
                                                                                 ascending=False)
                    
                    print(f"\nTo get a higher {selected_variable}, the model recommends the following options:")
                    if len(df_recom_opt_rank_out) < 2:
#                         print("You've already achieved the highest", selected_variable, 
#                               "with the current Call-To-Action Texts!")
                        increment = output_rate + (0.02*3)
                        for _, row in df_recom_extra.iterrows():
                            target_rate = random.uniform(increment - 0.02, increment)
                            increment = target_rate - 0.001
                            recom_cta = row[3]
                            print(f"\x1b[1m. {recom_cta.upper()}    {round(target_rate*100, 2)}%\x1b[22m")
                                                                         
                    else:
                        for _, row in df_recom_opt_rank_out.iterrows():                                                                                                
                            target_rate = row[4]
                            recom_cta = row[3]
                            print(f"\x1b[1m. {recom_cta.upper()}    {round(target_rate*100, 2)}%\x1b[22m")

                elif selected_cta == 'Both':
#                     df_recom_cl = df_recom_sort.drop_duplicates(subset=['cta_color'], keep='last')
#                     df_recom_tx = df_recom_sort.drop_duplicates(subset=['cta_text'], keep='last')
                    df_recom_both = df_recom_sort.drop_duplicates(subset=['cta_color', 'cta_text'], keep='last')
                    
#                     df_recom_opt_both = df_recom_both[(df_recom_both[selected_variable] > output_rate)]
#                     df_recom_opt_rank_both = df_recom_opt_both.sample(n=3)
#                     df_recom_opt_rank_both_out = df_recom_opt_rank_both.sort_values(by=[selected_variable], ascending=False)
# #                     df_recom_opt_rank_both = df_recom_opt_both.nlargest(3, [selected_variable])

                    words = simple_preprocess(email_text)
                    test_doc_vector = recom_model.infer_vector(words)
                    recom_similar = recom_model.dv.most_similar(positive = [test_doc_vector], topn=30)
                      
#                     query_vec = recom_model.encode([selected_text])[0]
#                     df_cosine = pd.DataFrame(columns=["cta_text", "similarity"])
#                     for sent in texts:
#                         sim = cosine(query_vec, recom_model.encode([sent])[0])
#                         df_cosine.loc[len(df_cosine.index)] = [sent, sim]
                        
#                     df_cosine_sort = df_cosine.sort_values(by=['similarity'], ascending=False)
                    df_recom_opt_out = pd.DataFrame(columns=["industry_code", "campaign_code", "cta_color", 
                                                             "cta_text", selected_variable])

                    #for _, w in df_cosine_sort.iterrows():
                    for _, w in enumerate(recom_similar):
                        sim_word = texts[w[0]]  #w[0] 
                        df_recom_opt_sim = df_recom_both[df_recom_both['cta_text'] == sim_word]
                        df_recom_opt_out = pd.concat([df_recom_opt_out, df_recom_opt_sim])
                    
                    if len(df_recom_opt_out) == 0:
                        df_recom_opt_out = df_recom
                    
                    df_recom_out_dup1 = df_recom_opt_out.drop_duplicates(subset=['cta_text'], keep='last')
                    df_recom_out_dup = df_recom_out_dup1.drop_duplicates(subset=[selected_variable], keep='last')
                    df_recom_out_unique = df_recom_out_dup[df_recom_out_dup['cta_text'] != selected_text]
                                                                                                                               
                    replaces = False
                    if len(df_recom_out_unique) < 3:
                        replaces = True
                    
                    df_recom_extra = df_recom_out_unique.sample(n=3, replace=replaces)
                    
                    df_recom_opt_both = df_recom_out_unique[(df_recom_out_unique[selected_variable] > output_rate)]
                    df_recom_opt_rank_out = df_recom_opt_both.head(3).sort_values(by=[selected_variable], 
                                                                                 ascending=False)
                    
                    print(f"\nTo get a higher {selected_variable}, the model recommends the following options: ")

#                     if (len(df_recom_opt_rank_cl_out) == 0) or (len(df_recom_opt_rank_tx_out) == 0):
                    if len(df_recom_opt_rank_out) < 2 :
#                         print("You've already achieved the highest", selected_variable, 
#                               "with the current Call-To-Action Colors!")
                        increment = output_rate + (0.02*3)
                        for _, row in df_recom_extra.iterrows():
                            target_rate = random.uniform(increment - 0.02, increment)
                            increment = target_rate - 0.001
                            recom_color = row[2]
                            recom_text = row[3]
                            print(f"  {(color('  ', fore='#ffffff', back=recom_color))}  \x1b[1m{recom_text.upper()}    {round(target_rate*100, 2)}%\x1b[22m")
                                            
                    else:
                        for _, row in df_recom_opt_rank_out.iterrows():
                            target_rate = row[4]
                            recom_color = row[2]
                            recom_text = row[3]
                            print(f"  {(color('  ', fore='#ffffff', back=recom_color))}  \x1b[1m{recom_text.upper()}    {round(target_rate*100, 2)}%\x1b[22m")

    #             print(f"\x1b[1m\nTo get a higher {selected_variable}, the model recommends the following options: \x1b[22m")
                print('\n')
                
#     return r2_test


generate_pred = st.button('Generate Predictions')
if generate_pred:
    st.session_state.generate_pred = True
if uploaded_file is None and st.session_state.generate_pred:
    st.error('Please upload a email (HTML format)')
elif uploaded_file is not None and st.session_state.generate_pred:
    placeholder = st.empty()
    placeholder.text('Loading Data')
    
    # Starting predictions
    #vtext, ccolor, text = email_parser(st.session_state.uploaded_file)
    #utils.email_parser(uploaded_file.getvalue().decode("utf-8"))

    
    if (len(st.session_state.ccolor) > 0) and (len(st.session_state.text) > 0):
        cta_button = select_cta_button(st.session_state.ccolor, st.session_state.text)
        
        st.write(st.session_state)
        # get_predictions(st.session_state.target, st.session_state.industry, st.session_state.campaign, 
        #         st.session_state.call2action_feature, st.session_state.vtext, st.session_state.ccolor, st.session_state.text, cta_button)
        get_predictions(st.session_state.target, st.session_state.industry, st.session_state.campaign, 
                call2action_feature, st.session_state.vtext, st.session_state.ccolor, st.session_state.text, cta_button)
        
        #st.info("Number of Call-To-Actions in the email: {}".format(len(text)))
        #cta_list = generate_cta_list(len(text))
        #cta_selected = st.radio(
        #    'Select the Call-To-Action you would like to analyze ?',
        #    cta_list)
        #base_string = display_CTA(text, ccolor)
        #st.components.v1.html(base_string, height=len(text)*30+50)

        #predict = st.button('Predict Optimial CTA')

        #cta_menu = []
        #for i in range(len(text)):
        #    cta_menu.append(ipywidgets.Checkbox(
        #        value=False,
        #        description='Call-To-Action Text: {}'.format(i+1),
        #       disabled=False,
        #        indent=False
        #    ))
        #if cta_selected == 'All':
        #    for i in range(len(text)):
        #        cta_menu[i].value = True
        #else:
        #    index = int(cta_selected.split(' ')[-1])-1
        #    cta_menu[index].value = True

        #if st.session_state.generate_pred and predict:
           # utils.get_predictions(
           #     target,
           #     industry,
            #    campaign,
           #     call2action_feature,
          #      vtext,
         #       ccolor,
        #        text,
        #        cta_menu)
        
    else:
        st.write(st.session_state)
        st.error("The email you uploaded does not contain any Call-To-Actions.")
    
    placeholder.text('')