Spaces:
Runtime error
Runtime error
updating select_cta_button
Browse files
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -414,9 +414,13 @@ def select_cta_button(ccolor, text):
|
|
414 |
st.write('Select which Call-To-Action button(s) you would like to analyze: \n')
|
415 |
|
416 |
#st.write(st.session_state)
|
|
|
417 |
for x in np.arange(len(st.session_state.ccolor)):
|
418 |
-
|
419 |
-
|
|
|
|
|
|
|
420 |
for cb in user_input:
|
421 |
cb.value = select_all.value
|
422 |
|
@@ -440,7 +444,7 @@ def select_cta_button(ccolor, text):
|
|
440 |
|
441 |
select_all.observe(toggle_all)
|
442 |
|
443 |
-
return user_input
|
444 |
|
445 |
def save_state():
|
446 |
if uploaded_file is not None:
|
@@ -594,9 +598,10 @@ def get_predictions(selected_variable, selected_industry, selected_campaign,
|
|
594 |
output_rate = predicted_rate
|
595 |
|
596 |
if output_rate < 0:
|
597 |
-
|
598 |
else:
|
599 |
print(f'\x1b[35m\nModel Prediction on the {selected_variable} is: \x1b[1m{round(output_rate*100, 2)}%\x1b[39m\x1b[22m')
|
|
|
600 |
selected_industry_code = industry_code_dict.get(selected_industry)
|
601 |
selected_campaign_code = campaign_code_dict.get(selected_campaign)
|
602 |
|
|
|
414 |
st.write('Select which Call-To-Action button(s) you would like to analyze: \n')
|
415 |
|
416 |
#st.write(st.session_state)
|
417 |
+
buttons_out=[]
|
418 |
for x in np.arange(len(st.session_state.ccolor)):
|
419 |
+
bstyle="background-color: {}; color:{}; border-radius: 0.75rem;".format(st.session_state.ccolor[x],st.session_state.ccolor[x])
|
420 |
+
ctab=st.button("Call_To_Action text: "+str(st.session_state.text[x]), key = x, style=bstyle)
|
421 |
+
buttons_out.append(ctab)
|
422 |
+
return buttons_out
|
423 |
+
'''def toggle_all(change):
|
424 |
for cb in user_input:
|
425 |
cb.value = select_all.value
|
426 |
|
|
|
444 |
|
445 |
select_all.observe(toggle_all)
|
446 |
|
447 |
+
return user_input'''
|
448 |
|
449 |
def save_state():
|
450 |
if uploaded_file is not None:
|
|
|
598 |
output_rate = predicted_rate
|
599 |
|
600 |
if output_rate < 0:
|
601 |
+
st.markdown("##### Sorry, Current model couldn't provide predictions on the target variable you selected.", unsafe_allow_html=True)
|
602 |
else:
|
603 |
print(f'\x1b[35m\nModel Prediction on the {selected_variable} is: \x1b[1m{round(output_rate*100, 2)}%\x1b[39m\x1b[22m')
|
604 |
+
st.markdown("##### Model Prediction on the {} is {}".format(selected_variable, round(output_rate*100, 2)), unsafe_allow_html=True)
|
605 |
selected_industry_code = industry_code_dict.get(selected_industry)
|
606 |
selected_campaign_code = campaign_code_dict.get(selected_campaign)
|
607 |
|